Métodos iterativos multi-plano para la recuperación del campo complejo del objeto libre de aberraciones usando un SLM

R. Restrepo, T. Belenguer


Descargar artículo

Información básica

Volumen

V50 - N4 / 2017 Ordinario

Referencia

337-349

DOI

http://doi.org/10.7149/OPA.50.4.49066

Idioma

English

Etiquetas

Métodos de recuperación de fase iterativos, aberraciones ópticas.

Resumen

Este artículo explica dos métodos iterativos para la recuperación de la fase, donde el objetivo de cada método es diferente. El método de Diversidad de Fase se usa para recuperar las aberraciones ópticas de un sistema formador de imagen usando iluminación incoherente y un objeto extendido. El propósito del método Multi-plano Iterativo de Recuperación de Fase es recuperar el campo complejo del objeto y por tanto la iluminación debe ser coherente. Ambos métodos se usan simultáneamente para obtener tanto las aberraciones como la fase del objeto libre de aberraciones. El uso de ambos métodos se propone como una metodología para la integración de instrumentos ópticos.

Referencias

0

J. A. Bonet, High Spatial Resolution Imaging Solar Physics. Astrophysics and Space Science Library (1999).

1

A. Anand, B. Javidi, "Three-dimensional microscopy with single-beam wavefront sensing and reconstruction from speckle fields," Optics letters, 35:766 (2010).

2

K. B. Doyle, V. L. Genberg, G. J. Michels, Integrated Optomechanical Analysis. SPIE Press, 1st edition, (2002).

3

G. Ming Dai, Wavefront Optics for Vision Correction. SPIE Press, 1st edition (2008).

4

S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte, "Spiral interferometry," Optics Letters, 30:1953 (2005).

5

R. W. Gerchgerg, W. O. Saxton, "A practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures," Optik, 35:237 (1972).

6

F. Roddier, C. Roddier, "Wavefront reconstruction using iterative Fourier transforms," Applied Optics, 30:1325 (1991).

7

C. Torti, S. Gruppetta, L. Diaz-Santana, "Wavefront curvature sensing for the human eye," Journal of Modern Optics, 55:691 (2008).

8

V. Yu. Ianov, V. p. Sivokon, M. A. Vorontsov, "Phase retrieval from a set of intensity measurements: theory and experiment," Journal of the Optical Society of America A, 9: 1515 (1992).

9

J. R.Fienup, "Phase retrieval algorithims: a comparison," Applied Optics, 21:2758 (1982).

10

G. Pedrini, W. Osten, Y. Zhang, "Wave-front reconstruction from a sequence of interferograms recorded at different planes," Optics Letters, 30: 833 (2005).

11

P. Almoro, G. Pedrini, W. Osten, "Complete Wavefront reconstruction using sequential intensity measurements of a volume speckle field," Applied Optics, 45: 8596 (2006).

12

A. Migukin, Interative Phase Retrieval from multiple noisy observations: Variational and Sparse object approximation techniques. PhD thesis, Tampere University of Technoloy, Tampere, Finlandia (2012).

13

J. D. Schmidt, Numerical Simulation of Optical Wave Propagation. SPIE Press, 1st edition (2010).

14

P. Almoro, A. M. S. Maallo, S. G. Hanson, "Fast-convergent algorithm for speckle-based phase retrieval and a design for dynamic wavefront sensing," Applied Optics, 48: 1485 (2009).

15

A. Migukin, V. Katkovnik, J. Astola, "Wave field reconstruction from multiple plane intensity-only data: augmented Lagrangian algorithm," Journal of the Optical Society of America A, 28: 993 (2011).

16

A. Anand, G. Pedrini, W. Osten, P. Almoro, "Wavefront sensing with random amplitude mask and phase retrieval," Optics Letters, 32: 1584 (2007).

17

A. Anand, V. K. Chhaniwal, P. Almoro, G. Pedrini, W. Osten, "Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval," Optics Letters, 34: 1522 (2009)

18

C. Falldorf, M. Algour, C. V. Kopylow, R. B. Bergmann, "Phase retrieval by means of a spatial light modulator in the Fourier domain of an imaging system," Applied Optics, 49: 1826 (2010)

19

V. Katkovnik, J. Astola, "Phase retrieval via spatial light modulator phase modulation in 4f optical setup: numerical inverse imaging with sparse regularization for phase and amplitude," Journal of the Optical Society of America A, 29: 105 (2012)

20

R. A. Gonsalves, R. Chidlaw, "Wavefront sensing by phase retrieval," SPIE Applications of Digital Image Processing III, 207, 32 (1979)

21

R. A. Gonsalves, R. Childlaw, "Phase retrieval and diversity in adaptative optics," Optical Engineering, 21: 829 (1982)

22

R. G. Paxman, T. J. Shulz, J. R. Fienup, "Joint estimation of object and aberrations by using phase divertity," Journal of the Optical Society of America A, 9: 1072 (1992)

23

P. Kner, "Phase diversity for three-dimensional imaging," Journal of the Optical Society of America A, 30: 1980 (2013)

24

N. Uribe-Patarroyo, A. Álvarez Herrero, T. Belenguer, "Measurement of the quantum superposition state of an imaging ensemble of photons prepared in orbital angular momentum states using phase diversity method," Physical Review, 81: 053822 (2010)

25

A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, M. Ritsch-Marte, "Wavefront correction of spatial light modulators using an optical vortex image," Optics Express, 15: 5801 (2007)

26

J. W. Goodman, Introduction to Fourier Optics, McGraw Hill, Higher Education, 2nd edition (1996)

27

D. G. Voelz, Computational Fourier Optics: A MATLAB Tutorial. SPIE Press, 1st edition (2011)

28

R. Noll, "Zernike polynomials and atmospheric turbulence," Journal of the Optical Society of America, 66: 207 (1976)

29

S. Echeverri-Chacón, R. Restrepo, C. Cuartas-Vélez, N. Uribe-Patarroyo. Vortex-enhanced coherent-illumination phase diversity for phase retrieval in coherent imaging systems, Optics Letters, 41, 1817-1820, (2016).