Evaluación de dispositivos digitales de microespejos para el control del ruido speckle en holografía digital
J. Gaviria-Mesa, D. Hincapie-Zuluaga, J. García-Sucerquia, N. Correa-Rojas, J. Herrera-Ramírez
Descargar artículo
Información básica
Volumen
V50 - N3 / 2017 Ordinario
Referencia
317-326
DOI
http://doi.org/10.7149/OPA.50.3.49069
Idioma
English
Etiquetas
Holografía digital, Speckle, Digital Micromirror Device
Resumen
El ruido speckle es un problema inherente a las técnicas de formación de imágenes con luz coherente. Ya que la holografía digital es una de estas técnicas, también se ve afectada por este problema. Aunque se han hecho varios intentos por eliminar el ruido speckle en la reconstrucción numérica de hologramas registrados digitalmente, todavía existe la necesidad de métodos rápidos y efectivos para eliminar el speckle y mejorar la calidad de las imágenes reconstruidas. Nosotros evaluamos la conveniencia del uso de un dispositivo digital de microespejos (DMD) como modulador de la iluminación del objeto en un montaje holográfico digital. El DMD actúa generando patrones aleatorios tipo speckle que son proyectados sobre el objeto. Estos patrones cambian el haz objeto de una manera aleatoria y después interfiere formando el holograma. Se registran varios hologramas, cada uno con un patrón diferente en la iluminación del objeto, y se reconstruyen numéricamente. La imagen final con el ruido speckle reducido es el resultado de la superposición en intensidades de varias de estas reconstrucciones. La viabilidad del método es validada mediante resultados experimentales.
Referencias
J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms", Appl. Phys. Lett. 11, 77–79 (1967). DOI
E. Tajahuerce and B. Javidi, "Encrypting three-dimensional information with digital holography", Appl. Opt. 39, 6595 (2000). DOI
L. Wilson and R. Zhang, "3D Localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation", Opt. Express 20, 16735 (2012). DOI
M.-K. Kim, "Applications of Digital Holography in Biomedical Microscopy", J. Opt. Soc. Korea 14, 77– 89 (2010). DOI
S. Teeranutranont and K. Yoshimori, "Digital holographic three-dimensional imaging spectrometry.", Appl. Opt. 52, A388-96 (2013). DOI
Y. Lu, Y. Liu, and T. K. Lau, "Simple, portable, and low-cost microscope based on off-axis digital holography using two spherical waves.", Opt. Lett. 39, 4549–52 (2014). DOI
P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, S. Grilli, M. Iodice, C. Magro, and G. Pierattini, "Digital holography for characterization and testing of MEMS structures", IEEE/LEOS Int. Conf. Opt. MEMs 125–126 (2002). DOI
M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg, "Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy.", Appl. Opt. 51, 1503–15 (2012). DOI
Z. Frentz, S. Kuehn, D. Hekstra, and S. Leibler, "Microbial population dynamics by digital in-line holographic microscopy.", Rev. Sci. Instrum. 81, 84301 (2010). DOI
E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging", Opt. Lett. 24, 291 (1999). DOI
J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, "Biomedical applications of holographic microspectroscopy [Invited]", Appl. Opt. 53, G111 (2014). DOI
Y. Imai and Y. Ohtsuka, "Laser speckle reduction by ultrasonic modulation", Opt. Commun. 27, 18–22 (1978). DOI
C. Liu, Y. Chang, K.-W. Lin, and P. Lin, "Speckle reduction in laser imaging applications using rotating magneto-optical disk", J. Opt. Soc. Am. A 31, 16 (2014). DOI
B. Redding, G. Allen, E. R. Dufresne, and H. Cao, "Low-loss high-speed speckle reduction using a colloidal dispersion.", Appl. Opt. 52, 1168–72 (2013). DOI
T.-T.-K. Tran, ø. Svensen, X. Chen, and M. Nadeem Akram, "Speckle reduction in laser projection displays through angle and wavelength diversity", Appl. Opt. 55, 1267 (2016). DOI
T. Tschudi, "Speckle reduction in laser projections with ultrasonic waves", Opt. Eng. 39, 1659 (2000). DOI
J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, "Reduction of speckle in digital holography by discrete Fourier filtering", J. Opt. Soc. Am. A 24, 1617 (2007). DOI
D. Hincapie, J. Herrera-Ramírez, and J. Garcia-Sucerquia, "Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms", Opt. Lett. 40, 1623 (2015) . DOI
T. Fukuoka, Y. Mori, and T. Nomura, "Speckle Reduction by Spatial-Domain Mask in Digital Holography", J. Disp. Technol. 1–1 (2015).
P. Memmolo, I. Esnaola, A. Finizio, M. Paturzo, P. Ferraro, and A. M. Tulino, "SPADEDH: a sparsitybased denoising method of digital holograms without knowing the noise statistics", Opt. Express 20, 17250 (2012). DOI
V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, "Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography.", Opt. Lett. 38, 619–21 (2013). DOI
A. Uzan, Y. Rivenson, and A. Stern, "Speckle denoising in digital holography by nonlocal means filtering", Appl. Opt. 52, A195 (2013). DOI
A. Sharma, G. Sheoran, Z. a. Jaffery, and Moinuddin, "Improvement of signal-to-noise ratio in digital holography using wavelet transform", Opt. Lasers Eng. 46, 42–47 (2008). DOI
J. Garcia-Sucerquia, J. Herrera-Ramirez, and D. Velasquez-Prieto, "Reduction of speckle noise in digital holography by using digital image processing", Opt. - Int. J. Light Electron Opt. 116, 44–48 (2005). DOI
J. H. Massig, "Digital off-axis holography with a synthetic aperture", Opt. Lett. 27, 2179 (2002). DOI
J. Büaut;hl, H. Babovsky, A. Kiessling, and R. Kowarschik, "Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra", Opt. Commun. 283, 3631–3638 (2010). DOI
X. Cai and H. Wang, "The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction", Opt. Commun. 281, 232–237 (2008). DOI
C. Quan, X. Kang, and C.-J. Tay, "Speckle noise reduction in digital holography by multiple holograms", Opt. Eng. 46, 115801 (2007) . DOI
L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, "Speckle noise reduction in digital holography by use of multiple polarization holograms", Chinese Opt. Lett. 8, 653–655 (2010). DOI
J. Garcia-Sucerquia, J. Herrera-Ramírez, and R. Castaneda, "Incoherent recovering of the spatial resolution in digital holography", Opt. Commun. 260, 62–67 (2006). DOI
Y. Wang, P. Meng, D. Wang, L. Rong, and S. Panezai, "Speckle noise suppression in digital holography by angular diversity with phase-only spatial light modulator", Opt. Express 21, 19568 (2013). DOI
T. Nomura, M. Okamura, E. Nitanai, and T. Numata, "Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths", Appl. Opt. 47, D38 (2008). DOI
T. Baumbach, E. Kolenovic, V. Kebbel, and W. Jüaut;ptner, "Improvement of accuracy in digital holography by use of multiple holograms", Appl. Opt. 45, 6077 (2006) . DOI
J. Herrera-Ramirez, D. A. Hincapie-Zuluaga, and J. Garcia-Sucerquia, "Speckle noise reduction in digital holography by slightly rotating the object", Opt. Eng. 55, 121714 (2016). DOI
Y.-X. Ren, R.-D. Lu, and L. Gong, "Tailoring light with a digital micromirror device", Ann. Phys. 527, 447–470 (2015). DOI
D. Dudley, W. M. Duncan, and J. Slaughter, "Emerging digital micromirror device (DMD) applications", Proc. SPIE 4985, 14 (2003). DOI
B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, "Sub-micron-scale femtosecond laser ablation using a digital micromirror device", J. Micromechanics Microengineering 23, 35005 (2013). DOI
X.-Y. Ding, Y.-X. Ren, L. Gong, Z.-X. Fang, and R.-D. Lu, "Microscopic lithography with pixelate diffraction of a digital micro-mirror device for micro-lens fabrication", Appl. Opt. 53, 5307 (2014). DOI
T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods, Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, (2004).
M. L. Samuels, J. A. Witmer, and A. A. Schaffner, Statistics for the life sciences, Prentice Hall (Pearson), Boston, MA, (2010).