Evaluación de dispositivos digitales de microespejos para el control del ruido speckle en holografía digital

J. Gaviria-Mesa, D. Hincapie-Zuluaga, J. García-Sucerquia, N. Correa-Rojas, J. Herrera-Ramírez


Descargar artículo

Información básica

Volumen

V50 - N3 / 2017 Ordinario

Referencia

317-326

DOI

http://doi.org/10.7149/OPA.50.3.49069

Idioma

English

Etiquetas

Holografía digital, Speckle, Digital Micromirror Device

Resumen

El ruido speckle es un problema inherente a las técnicas de formación de imágenes con luz coherente. Ya que la holografía digital es una de estas técnicas, también se ve afectada por este problema. Aunque se han hecho varios intentos por eliminar el ruido speckle en la reconstrucción numérica de hologramas registrados digitalmente, todavía existe la necesidad de métodos rápidos y efectivos para eliminar el speckle y mejorar la calidad de las imágenes reconstruidas. Nosotros evaluamos la conveniencia del uso de un dispositivo digital de microespejos (DMD) como modulador de la iluminación del objeto en un montaje holográfico digital. El DMD actúa generando patrones aleatorios tipo speckle que son proyectados sobre el objeto. Estos patrones cambian el haz objeto de una manera aleatoria y después interfiere formando el holograma. Se registran varios hologramas, cada uno con un patrón diferente en la iluminación del objeto, y se reconstruyen numéricamente. La imagen final con el ruido speckle reducido es el resultado de la superposición en intensidades de varias de estas reconstrucciones. La viabilidad del método es validada mediante resultados experimentales.

Referencias

0

J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms", Appl. Phys. Lett. 11, 77–79 (1967). DOI

1

E. Tajahuerce and B. Javidi, "Encrypting three-dimensional information with digital holography", Appl. Opt. 39, 6595 (2000). DOI

2

L. Wilson and R. Zhang, "3D Localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation", Opt. Express 20, 16735 (2012). DOI

3

M.-K. Kim, "Applications of Digital Holography in Biomedical Microscopy", J. Opt. Soc. Korea 14, 77– 89 (2010). DOI

4

S. Teeranutranont and K. Yoshimori, "Digital holographic three-dimensional imaging spectrometry.", Appl. Opt. 52, A388-96 (2013). DOI

5

Y. Lu, Y. Liu, and T. K. Lau, "Simple, portable, and low-cost microscope based on off-axis digital holography using two spherical waves.", Opt. Lett. 39, 4549–52 (2014). DOI

6

P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, S. Grilli, M. Iodice, C. Magro, and G. Pierattini, "Digital holography for characterization and testing of MEMS structures", IEEE/LEOS Int. Conf. Opt. MEMs 125–126 (2002). DOI

7

M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg, "Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy.", Appl. Opt. 51, 1503–15 (2012). DOI

8

Z. Frentz, S. Kuehn, D. Hekstra, and S. Leibler, "Microbial population dynamics by digital in-line holographic microscopy.", Rev. Sci. Instrum. 81, 84301 (2010). DOI

9

E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging", Opt. Lett. 24, 291 (1999). DOI

10

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, "Biomedical applications of holographic microspectroscopy [Invited]", Appl. Opt. 53, G111 (2014). DOI

11

J. W. Goodman, "Some fundamental properties of speckle", J. Opt. Soc. Am. 66, 1145 (1976). DOI

12

Y. Imai and Y. Ohtsuka, "Laser speckle reduction by ultrasonic modulation", Opt. Commun. 27, 18–22 (1978). DOI

13

C. Liu, Y. Chang, K.-W. Lin, and P. Lin, "Speckle reduction in laser imaging applications using rotating magneto-optical disk", J. Opt. Soc. Am. A 31, 16 (2014). DOI

14

B. Redding, G. Allen, E. R. Dufresne, and H. Cao, "Low-loss high-speed speckle reduction using a colloidal dispersion.", Appl. Opt. 52, 1168–72 (2013). DOI

15

T.-T.-K. Tran, ø. Svensen, X. Chen, and M. Nadeem Akram, "Speckle reduction in laser projection displays through angle and wavelength diversity", Appl. Opt. 55, 1267 (2016). DOI

16

T. Tschudi, "Speckle reduction in laser projections with ultrasonic waves", Opt. Eng. 39, 1659 (2000). DOI

17

J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, "Reduction of speckle in digital holography by discrete Fourier filtering", J. Opt. Soc. Am. A 24, 1617 (2007). DOI

18

D. Hincapie, J. Herrera-Ramírez, and J. Garcia-Sucerquia, "Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms", Opt. Lett. 40, 1623 (2015) . DOI

19

T. Fukuoka, Y. Mori, and T. Nomura, "Speckle Reduction by Spatial-Domain Mask in Digital Holography", J. Disp. Technol. 1–1 (2015).

20

P. Memmolo, I. Esnaola, A. Finizio, M. Paturzo, P. Ferraro, and A. M. Tulino, "SPADEDH: a sparsitybased denoising method of digital holograms without knowing the noise statistics", Opt. Express 20, 17250 (2012). DOI

21

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, "Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography.", Opt. Lett. 38, 619–21 (2013). DOI

22

A. Uzan, Y. Rivenson, and A. Stern, "Speckle denoising in digital holography by nonlocal means filtering", Appl. Opt. 52, A195 (2013). DOI

23

A. Sharma, G. Sheoran, Z. a. Jaffery, and Moinuddin, "Improvement of signal-to-noise ratio in digital holography using wavelet transform", Opt. Lasers Eng. 46, 42–47 (2008). DOI

24

J. Garcia-Sucerquia, J. Herrera-Ramirez, and D. Velasquez-Prieto, "Reduction of speckle noise in digital holography by using digital image processing", Opt. - Int. J. Light Electron Opt. 116, 44–48 (2005). DOI

25

J. H. Massig, "Digital off-axis holography with a synthetic aperture", Opt. Lett. 27, 2179 (2002). DOI

26

J. Büaut;hl, H. Babovsky, A. Kiessling, and R. Kowarschik, "Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra", Opt. Commun. 283, 3631–3638 (2010). DOI

27

X. Cai and H. Wang, "The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction", Opt. Commun. 281, 232–237 (2008). DOI

28

C. Quan, X. Kang, and C.-J. Tay, "Speckle noise reduction in digital holography by multiple holograms", Opt. Eng. 46, 115801 (2007) . DOI

29

L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, "Speckle noise reduction in digital holography by use of multiple polarization holograms", Chinese Opt. Lett. 8, 653–655 (2010). DOI

30

J. Garcia-Sucerquia, J. Herrera-Ramírez, and R. Castaneda, "Incoherent recovering of the spatial resolution in digital holography", Opt. Commun. 260, 62–67 (2006). DOI

31

Y. Wang, P. Meng, D. Wang, L. Rong, and S. Panezai, "Speckle noise suppression in digital holography by angular diversity with phase-only spatial light modulator", Opt. Express 21, 19568 (2013). DOI

32

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, "Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths", Appl. Opt. 47, D38 (2008). DOI

33

T. Baumbach, E. Kolenovic, V. Kebbel, and W. Jüaut;ptner, "Improvement of accuracy in digital holography by use of multiple holograms", Appl. Opt. 45, 6077 (2006) . DOI

34

J. Herrera-Ramirez, D. A. Hincapie-Zuluaga, and J. Garcia-Sucerquia, "Speckle noise reduction in digital holography by slightly rotating the object", Opt. Eng. 55, 121714 (2016). DOI

35

Y.-X. Ren, R.-D. Lu, and L. Gong, "Tailoring light with a digital micromirror device", Ann. Phys. 527, 447–470 (2015). DOI

36

D. Dudley, W. M. Duncan, and J. Slaughter, "Emerging digital micromirror device (DMD) applications", Proc. SPIE 4985, 14 (2003). DOI

37

B. Mills, M. Feinaeugle, C. L. Sones, N. Rizvi, and R. W. Eason, "Sub-micron-scale femtosecond laser ablation using a digital micromirror device", J. Micromechanics Microengineering 23, 35005 (2013). DOI

38

X.-Y. Ding, Y.-X. Ren, L. Gong, Z.-X. Fang, and R.-D. Lu, "Microscopic lithography with pixelate diffraction of a digital micro-mirror device for micro-lens fabrication", Appl. Opt. 53, 5307 (2014). DOI

39

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods, Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, (2004).

40

M. L. Samuels, J. A. Witmer, and A. A. Schaffner, Statistics for the life sciences, Prentice Hall (Pearson), Boston, MA, (2010).