Análisis del rendimiento de un conversor modal basado en una fibra de cristal fotónico doble núcleo asimétrica
E. Reyes-Vera, J. úsuga, J. Acevedo-Echeverry, N. Gómez-Cardona, M. Varón
Descargar artículo
Información básica
Volumen
V50 - N3 / 2017 Ordinario
Referencia
251-257
DOI
http://doi.org/10.7149/OPA.50.3.49023
Idioma
English
Etiquetas
multiplexación por división modal, conversor modal, fibra de cristal fotónico, fibra
Resumen
En este artículo, un novedoso conversor modal basado en una fibra de cristal fotónico con núcleos asimétricos es propuesto y analizado a través de la implementación del método de elementos finitos. Este dispositivo permite la conversión modal entre los modos LP01 con el LP11 y LP01 con el LP21 a una longitud de onda de 1.55 µm. Adicionalmente, hemos encontrado que la longitud de onda de operación de este tipo de dispositivos presenta una fuerte dependencia con los parámetros geométricos de la estructura tales como el diámetro de los agujeros y la distancia entre ellos. Finalmente, se obtuvo un dispositivo fotónico compacto que puede ser empleado en las bandas O + S + C + L + U con eficiencias superiores al 80 % y una longitud total de 2 mm. Esta es una alternativa interesante a la hora de fabricar nuevos dispositivos totalmente integrados a fibra óptica que puedan ser implementados en sistemas de multiplexación por división modal.
Referencias
D. J. Richardson, J. M. Fini, and L. E. Nelson, "Space-division multiplexing in optical fibres," Nat. Photonics, vol. 7, no. April, pp. 354–362 (2013). DOI
H. Takara, T. Takahashi, K. Nakajima, and Y. Miyamoto, "Ultra-High-Capacity Optical Transmission Using Multicore Space-Division-Multiplexing," in 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), pp. 2011–2012 (2013).
W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, and N. Wada, "Optical technologies for space division multiplexing," in 2014 13th Workshop on Information Optics (WIO), 2, pp. 1–3 (2014). DOI
C. Wu et al., "Strong LP 01 and LP 11 mutual coupling conversion in a two-mode fiber Bragg grating," IEEE Photonics J., vol. 4, no. 4, pp. 1080–1086, (2012). DOI
Y. Zhang, Y. Wang, S. Cai, M. Lan, S. Yu, and W. Gu, "Mode converter based on dual-core all-solid photonic bandgap fiber," Photonics Res., vol. 3, no. 5, pp. 220–223 (2015). DOI
Yunhe Zhao, Y. Liu, Jianxiang Wen, and Tingyun Wang, "Mode converter based on the long period fiber gratings written in two mode fiber," in 2015 Opto-Electronics and Communications Conference (OECC), vol. 24, no. 6, pp. 1–3 (2015).
P. Martelli, A. Gatto, P. Boffi, and M. Martinelli, "Free-space optical transmission with orbital angular momentum division multiplexing," Electron. Lett., vol. 47, no. 17, p. 972 (2011). DOI
E. E. Reyes Vera, J. E. Usuga Restrepo, N. E. Gómez Cardona, and M. Varón, "Mode selective coupler based in a dual-core photonic crystal fiber with non-identical cores for spatial mode conversion," in Latin America Optics and Photonics Conference, p. LTu3C.1. (2016). DOI
Y. Weng, X. He, J. Wang, and Z. Pan, "All-optical ultrafast wavelength and mode converter based on inter-modal four-wave mixing in few-mode fibers," Opt. Commun., vol. 348, pp. 7–12 (2015). DOI
T. Hellwig, T. Walbaum, and C. Fallnich, "Optically induced mode conversion in graded-index fibers using ultra-short laser pulses," Appl. Phys. B, vol. 112, no. 4, pp. 499–505 (2013). DOI
C. X. Shi and T. Okoshi, "Mode conversion based on the periodic coupling by a reflective fiber grating.," Opt. Lett., vol. 17, no. 23, pp. 1655–7,(1992). DOI
K. Saitoh and M. Koshiba, "Numerical modeling of photonic crystal fibers," J. Light. Technol., vol. 23, no. 11, pp. 3580–3590 (2005). DOI
J. Usuga, D. Amariles, N. Correa, E. Reyes-Vera, and N. Gomez-Cardona, "Analysis of chromatic dispersion compensator using a PCF with elliptical holes," Rev. Cuba. Fis., vol. 33, no. 1, pp. 38–41, 2016.
F. Velasquez-Botero, E. Reyes-Vera, and P. Torres, "Some refractometric features of dual-core chirped microstructured optical fibers," in Proceedings of SPIE, vol. 9634, p. 963450 (2015). DOI
E. Reyes-Vera, G. Chesini, C. M. Cordeiro, and P. Torres, "Large temperature sensitivity of birefringent side-hole photonic crystal fiber filled with Indium," in Workshop on Specialty Optical Fibers and their Applications, vol. 1, p. W3.16 (2013). DOI
A. Khaleque and H. T. Hattori, "Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber," J. Appl. Phys., vol. 118, no. 14, p. 143101 (2015). DOI
P. Torres, E. Reyes-Vera, A. Díez, and M. V Andrés, "Two-core transversally chirped microstructured optical fiber refractive index sensor.," Opt. Lett., vol. 39, no. 6, pp. 1593–1596 (2014). DOI
S. Cai, S. Yu, M. Lan, L. Gao, S. Nie, and W. Gu, "Broadband Mode Converter Based on Photonic Crystal Fiber," IEEE Photonics Technol. Lett., vol. 27, no. 5, pp. 474–477 (2015). DOI
M. Y. Chen and K. S. Chiang, "Mode-Selective Characteristics of an Optical Fiber with a High-Index Core and a Photonic Bandgap Cladding," IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2, (2016). DOI
S. Cai, S. Yu, Y. Wang, M. Lan, L. Gao, and W. Gu, "Hybrid Dual-Core Photonic Crystal Fiber for Spatial Mode Conversion," IEEE Photonics Technol. Lett., vol. 28, no. 3, pp. 339–342 (2016). DOI
F. Bagci, "A 1x4 power-splitter based on photonic crystal Y-splitter and directional couplers," Opt. Pura Opt. Pura Apl., vol. 46, no. 3, pp. 265–273 (2013). DOI
D. L. Lee, Electromagnetic Principles of Integrated Optics, 1st Editio. Wiley, (1986).
E. Reyes-Vera, N. D. Gómez-Cardona, G. Chesini, C. M. B. Cordeiro, and P. Torres, "Temperature sensibility of the birefringence properties in side-hole photonic crystal fiber filled with Indium," Appl. Phys. Lett., vol. 105, no. 20, p. 201101 (2014). DOI