Estudio experimental de los efectos del filtrado espacial en holografía digital fuera de eje operando fuera o dentro en el límite de difracción
R. Castañeda, D. Hincapié-Zulauga, J. García-Sucerquia
Descargar artículo
Información básica
Volumen
V50 - N1 / 2017 Ordinario
Referencia
93-102
DOI
http://doi.org/10.7149/OPA.50.1.49016
Idioma
Spanish
Etiquetas
Holografía digital, filtrado espacial, límite de difracción
Resumen
En este trabajo se hace un análisis teórico y experimental de la estrecha relación que existe entre el registro de hologramas digitales operando o no en el límite de difracción y del proceso de filtrado espacial en el desempeño global de la reconstrucción numérica de hologramas registrados digitalmente. Los resultados obtenidos permiten concluir que no es posible hacer un filtrado espacial correcto del holograma para su posterior reconstrucción numérica, si el registro de holograma no es realizado en el límite de difracción o en su defecto sin solapamiento de los órdenes de difracción.
Referencias
U. Schnars and W. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction.", Appl. Opt. 33, 179–81 (1994). DOI
M. K. Kim, Digital Holographic Microscopy. Principles, techniques, and Aplications, Springer, (2011). DOI
A. Asundi, Digital Holography for MEMS and Microsystem Metrology, (2011).
O. Matoba and B. Javidi, "Encrypted optical memory system using three-dimensional keys in the Fresnel domain", Opt. Lett. 24, 762–764 (1999). DOI
J. W. Goodman, Statistical Optics, Wiley, (1985).
D. Hincapie, J. Herrera-Ramírez, J. Garcia-Sucerquia, J. Herrera-Ramirez, and J. Garcia-Sucerquia, "Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms", Opt. Lett. 40, 1623–1626 (2015). DOI
J. Garcia-Sucerquia, J. H. Ramírez, R. Castaneda, J. Herrera-Ramírez, and R. Castaneda, "Incoherent recovering of the spatial resolution in digital holography", Opt. Commun. 260, 62–67 (2006). DOI
J. Garcia-Sucerquia, J. H. Ramírez, and D. Velasquez Prieto, "Reduction of spleckle noise in digital holography by using digital image processing", Opt. J. Light Electron Opt. 116, 44–48 (2005). DOI
J. W. Goodman, Introduction to Fourier Optics, Roberst & Company Publishers, Greenwood Village, Colo, (2005).
T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods, Wiley-vch Verlag Ed, Weinheim, Weinheim, (2005).
O. K. Ersoy, Diffraction, Fourier Optics and Imaging, Hobenken, New Jersey, (2006).
J. Li and P. Picart, "Calculating Diffraction by Fast Fourier Transform", Digit. Hologr. 77–114 (2012).
T. Kreis, Handbook of Holographic Interferometry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, (2004).
J. F. Restrepo and J. Garcia-Sucerquia, "Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform.", Appl. Opt. 49, 6430–6435 (2010). DOI
D. Mendlovic, Z. Zalevsky, and N. Konforti, "Computation considerations and fast algorithms for calculating the diffraction integral", J. Mod. Opt. 44, 407–414 (1997). DOI
M. Sypek, C. Prokopowicz, and M. Go´recki, "Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation", Opt. Eng. 42, 3158–3164 (2003). DOI
R. Castañeda, W. Toro, and J. Garcia-Sucerquia, "Evaluation of the limits of application for numerical diffraction methods based on basic optics concepts", Opt. - Int. J. Light Electron Opt. 126, 5963–5970 (2015). DOI
M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry", J. Opt. Soc. Am. 72, 156–160 (1982). DOI
E. Cuche, P. Marquet, and C. Depeursinge, "Spatial Filtering for zero-order and twin-image elimination in digital off-axis holography", Appl. Opt. 39, 4070–4075 (2000). DOI
S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography", Opt. Lasers Eng. 37, 331–340 (2002). DOI
B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, "Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing", Chinese Opt. Lett. 14, 60902 (2016). DOI
V. Katkovnik, I. A. Shevkunov, N. V Petrov, and K. Egiazarian, "Wavefront reconstruction in digital offaxis holography via sparse coding of amplitude and absolute phase", Opt. Lett. 40, 2417–2420 (2015). DOI
M. Karray, P. Slangen, and P. Picart, "Comparison between Digital Fresnel Holography and Digital Image-Plane Holography: The Role of the Imaging Aperture", Exp. Mech. 52, 1275–1286 (2012). DOI
P. Picart, M. Karray, and P. Slangen, "Some Considerations About the Role of the Diaphragm in Digital Image-Plane Holography", DW4C.6 (2012).
E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, "Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit", Appl. Opt. 53, 2058–2066 (2014). DOI
N. Verrier and M. Atlan, "Off-axis digital hologram reconstruction: some practical considerations", Appl. Opt. 50, H136–H146 (2011). DOI
L. Xu, J. Miao, and A. Asundi, "Properties of digital holography based on in-line configuration", Opt. Eng. 39, 3214–3219 (2000). DOI
P. Piedrahita-Quintero, R. Castañeda, and J. Garcia-Sucerquia, "Numerical wave propagation in ImageJ", Appl. Opt. 54, 6410–6415 (2015). DOI
P. Piedrahita, R. Castañeda, and J. Garcia-Sucerquia, Numerical Propagation