Análisis de imagen retiniana: Procesado de imagen y extracción de características orientado a la tarea clínica

A.G. Marrugo, M. S. Millán


Descargar artículo

Información básica

Volumen

V50 - N1 / 2017 Ordinario

Referencia

49-62

DOI

http://doi.org/10.7149/OPA.50.1.49507

Idioma

English

Etiquetas

Diagnóstico asistido por computador, imagen médica, imagen retiniana, telemedicina, oftalmología

Resumen

La captura de imagen digital es una parte fundamental de los procedimientos médicos modernos. Provee de documentación visual, un registro permanente para los pacientes y la posibilidad de extraer información cuantitativa sobre muchas enfermedades. La oftalmología depende considerablemente del análisis digital de imágenes. En este trabajo se presentan los resultados principales de la tesis doctoral de Andrés G. Marrugo. Este trabajo contribuye al análisis digital de tales imágenes y los problemas que surgen a lo largo del proceso de formación de imagen. Este campo se le conoce como análisis de imagen retiniana. En esta tesis se han propuesto soluciones a problemas asociados con la adquisición de imagen retiniana y la detección de cambios temporales en patologías retinianas. Específicamente, los problemas de iluminación no-uniforme, baja calidad de imagen, enfoque automático, y análisis multi-canal. Sin embargo, existen situaciones inevitables en que se adquieren imágenes de baja calidad, como imágenes emborronadas debido a las aberraciones del ojo. Este problema lo hemos abordado utilizando dos metodologías para la deconvolución ciega de imágenes. En la primera aproximación, consideramos que el emborronamiento es invariante espacialmente y en la segunda aproximación extendimos el trabajo y propusimos un método más general espacialmente variante.

Referencias

0

M. D. Abramoff, M. Garvin, and M. Sonka, "Retinal Imaging and Image Analysis," Biomedical Engineering, IEEE Reviews 3, 169–208, (2010). DOI

1

A. G. Marrugo, "Comprehensive Retinal Image Analysis: Image Processing and Feature Extraction Techniques Oriented to the Clinical Task.," Universitat Politècnica de Catalunya, Barcelona, (2013). http://hdl.handle.net/10803/134698

2

A. G. Marrugo, M. S. Millan, G. Cristóbal, S. Gabarda, and H. C. Abril, "No-reference Quality Metrics for Eye Fundus Imaging," CAIP 2011, LNCS, 6854, 486–493, (2011).

3

S. Gabarda and G. Cristóbal, "Blind image quality assessment through anisotropy," J Opt Soc Am A Opt Image Sci Vis, 24 , B42–51, (2007). DOI

4

Xiang Zhu and P. Milanfar, "Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content," IEEE Trans Image Process. 19, 3116–3132, (2010). DOI

5

R. Ferzli and L. J. Karam, "A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB)," IEEE Trans Image Process. 18, 717–728, (2009). DOI

6

Y. Qu, Z. Pu, H. Zhao, and Y. Zhao, "Comparison of different quality assessment functions in autoregulative illumination intensity algorithms," Opt. Eng. 45, 117201, (2006). DOI

7

A. G. Marrugo, M. S. Millan, G. Cristóbal, S. Gabarda, and H. C. Abril, "Anisotropy-based robust focus measure for non-mydriatic retinal imaging," J. Biomed. Opt., 17, 076021, (2012). DOI

8

M. Moscaritolo, H. Jampel, F. Knezevich, and R. Zeimer, "An Image Based Auto-Focusing Algorithm for Digital Fundus Photography," IEEE Trans. Med. Imaging, 28, 1703–1707, (2009). DOI

9

S. Nayar and Y. Nakagawa, "Shape from focus," IEEE Trans Pattern Anal Mach Intell, 16, 824–831, (1994). DOI

10

K. Choi, J. Lee, and S. Ko, "New autofocusing technique using the frequency selective weighted median filter for video cameras," IEEE T. Consum. Electr., 45, 820–827, (1999). DOI

11

M. Kristan, J. Pers, M. Perse, and S. Kovacic, "A Bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform," Pattern Recognit. Lett., 27, 1431–1439, (2006). DOI

12

A. G. Marrugo, M. S. Millan, and H. C. Abril, "Implementation of an image based focusing algorithm for non-mydriatic retinal imaging," Engineering Mechatronics and Automation (CIIMA), 2014 III International Congress of, 1–3, (2014). DOI

13

A. G. Marrugo, Ed., Anisotropy focus measure. [Online Accessed: 17-Apr-2016]. Available at: Anisotropy focus

14

H. Narasimha-Iyer, A. Can, B. Roysam, C. Stewart, H. Tanenbaum, A. Majerovics, and H. Singh, "Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy," IEEE Trans. Biomed. Eng., 53, 1084–1098, (2005) DOI

15

A. G. Marrugo, F. Sroubek, M. Sorel, and M. S. Millan, "Multichannel blind deconvolution in eye fundus imaging," presented at the ISABEL '11-Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, 7:1–5 (2011). DOI

16

N. Everdell, I. Styles, A. Calcagni, J. Gibson, J. Hebden, and E. Claridge, "Multispectral imaging of the ocular fundus using light emitting diode illumination," Rev. Sci. Instrum., 81, 093706–093709, (2010). DOI

17

A. G. Marrugo, M. Sorel, F. Sroubek, and M. S. Millan, "Retinal image restoration by means of blind deconvolution," J. Biomed. Opt., 16, 11, 116016, (2011). DOI

18

C. Stewart, Chia-Ling Tsai, and B. Roysam, "The dual-bootstrap iterative closest point algorithm with application to retinal image registration," IEEE Trans. Med. Imaging, 22, 1379–1394, (2003).

19

T. Aach and A. Kaup, "Bayesian Algorithms for Change Detection in Image Sequences Using Markov Random Fields," Signal Process. Image 7, 147–160, (1995) DOI

20

A. Levin, Y. Weiss, F. Durand, and W. Freeman, "Understanding Blind Deconvolution Algorithms," IEEE Trans Pattern Anal. Mach Intell., 12, 2354–2367, (2011). DOI

21

A. G. Marrugo, M. S. Millan, G. Cristóbal, S. Gabarda, M. Sorel, and F. Sroubek, "Image analysis in modern ophthalmology: from acquisition to computer assisted diagnosis and telemedicine," presented at the Proceedings SPIE, 8436, 84360C–84360C–10 (2012). DOI

22

C. Muramatsu, Y. Hayashi, A. Sawada, Y. Hatanaka, T. Hara, T. Yamamoto, and H. Fujita, "Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma," J. Biomed. Opt., 15, 016021, (2010). DOI

23

L. Xu and S. Luo, "Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve," J. Biomed. Opt., 15, 065004, (2010). DOI

24

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt., 13, 024008, (2008). DOI

25

A. G. Marrugo, M. S. Millan, M. Sorel, and F. Sroubek, "Restoration of retinal images with space-variant blur," J. Biomed. Opt., 19, no. 1, p. 016023, Jan. 2014. DOI

26

A. G. Marrugo, M. S. Millan, M. Sorel, J. Kotera, and F. Sroubek, "Improving the blind restoration of retinal images by means of point-spread-function estimation assessment," presented at the Tenth International Symposium on Medical Information Processing and Analysis, 9287, 92871D (2015).

27

M. Tallón, J. Mateos, S. D. Babacan, R. Molina, and A. K. Katsaggelos, "Space-variant blur deconvolution and denoising in the dual exposure problem," INFORMATION FUSION, (2012).

28

A. G. Marrugo, M. S. Millan, M. Sorel, and F. Sroubek, "Blind restoration of retinal images degraded by space-variant blur with adaptive blur estimation," presented at the 8th Ibero American Optics Meeting/11th Latin American Meeting on Optics, Lasers, and Applications 8785, 8785D1 (2013)