Propuesta para calcular la componente circadiana en los proyectos de iluminación

A. Sánchez-Cano, O. L. Pérez, J. Aporta


Descargar artículo

Información básica

Volumen

V52 - N1 / 2019 Ordinario

Referencia

51015:1:11

DOI

http://doi.org/10.7149/OPA.52.1.51015

Idioma

Spanish

Etiquetas

ipRGC, iluminancia melanópica, iluminancia melanópica equivalente luz día, DIALux

Resumen

Existen normas que definen los métodos para caracterizar fotométricamente las luminarias de interiores, pero la iluminación tiene un impacto en los seres humanos más allá de éstas. La luz en los edificios es parte del entorno, el descubrimiento de las células ipRGC en la retina humana y sus espectros de acción asociados, llevan a la introducción de conceptos tales como funciones de acción circadiana y factores de acción circadiana. En este trabajo, se propone y evalúa un método innovador para simular la posible contribución melanópica en espacios interiores. Al realizar mediciones y simulaciones de eficiencia basadas en unas luminarias LED reales, se han determinado qué parámetros podrían calcularse en términos melanópicos y se propone un método para diferenciar y complementar las contribuciones fotópicas y melanópicas de las fuentes de luz. Esta métrica de iluminancia melanópica requiere medidas de irradiancia espectral, recalcular las curvas polares, duplicar los archivos de datos y caracterizar la reflectancia espectral del entorno, para evaluar la contribución melanópica del espacio iluminado. Se valida un modelo de simulación a través de una comparación entre los valores de iluminación medidos experimentalmente y los proporcionados por el software de diseño de iluminación comercial DIALux.

Referencias

0

G. Wyszecki, W. S. Stiles, Color science: concepts and methods, quantitative data and formulae, John Wiley & Sons, New York etc. (2000).

1

P. L. Kaufman, L. A. Levin, F. H. Adler, A. Alm, Adler's Physiology of the Eye, Elsevier Health Sciences (2011).

2

China Academy of Building Research,"GB 50034-2013. Standard for Lighting Design of Buildings," (2013).

3

CIBSE, "LG07/15 Lighting Guide 07: Offices-LG7," (2005).

4

CEN/TC 169-Light and lighting, "EN 12464-1:2011. Lighting of work places - Part 1: Indoor work places," (2011).

5

International WELL Building Institute (IWBI), "WELL Building Standard. LIGHT. Feature 53; Visual Lighting Design," (2017).

6

American National Standards Institute and Illuminating Engineering Society of North America, (ANSI), "American National Standard Practice for Office Lighting. ANSI/ IES RP-1-12." (2012).

7

M. Karlen, C. Spangler, J. R. Benya, Lighting design basics, John Wiley & Sons (2017).

8

D. Schreuder, Outdoor lighting: physics, vision and perception, Springer (2008).

9

C. P. Wild, "Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology," Cancer Epidemiol Biomarkers Prev 14, 1847-1850 (2005).

10

A. J. Lewy, T. A. Wehr, F. K. Goodwin, D. A. Newsome, S. P. Markey, "Light suppresses melatonin secretion in humans," Science 210, 1267-1269 (1980).

11

I. Provencio, M. D. Rollag, A. M. Castrucci, "Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night," Nature 415, 493 (2002).

12

G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, M. D. Rollag, "Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor," J Neurosci 21, 6405-6412 (2001).

13

K. Thapan, J. Arendt, D. J. Skene, "An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans," J Physiol 535, 261-267 (2001).

14

D. Gall, "Circadiane Lichtgrößen und deren meßtechnische Erfassung," Licht 7, 860 (2002).

15

M. S. Rea, M. G. Figueiro, A. Bierman, R. Hamner, "Modelling the spectral sensitivity of the human circadian system," Light Res Technol 44, 386-396 (2012).

16

J. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, R. Lucas, "A "melanopic" spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights," J Biol Rhythms 26, 314-323 (2011).

17

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O'Hagan, L. L. Price, I. Provencio, D. J. Skene, G. C. Brainard, "Measuring and using light in the melanopsin age," Trends Neurosci 37, 1-9 (2014).

18

A. de Vries, J. L. Souman, B. de Ruyter, I. Heynderickx, Y. A. de Kort, "Lighting up the office: The effect of wall luminance on room appraisal, office workers' performance, and subjective alertness," Build Environ (2018).

19

C. E. Ochoa, M. B. Aries, E. J. van Loenen, J. L. Hensen, "Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort," Appl Energy 95, 238-245 (2012).

20

C. E. Ochoa, M. B. C. Aries, J. L. M. Hensen, "State of the art in lighting simulation for building science: A literature review," J Build Perform Simul 5, 209-233 (2012).

21

M. B. C. Aries, M. P. J. Aarts, and J. Van Hoof, "Daylight and health: A review of the evidence and consequences for the built environment," Light Res Technol 47, 6-27 (2015).

22

Deutsches Institut für Normung, (DIN), "DIN SPEC 5031-100:2015-08. Optical radiation physics and illuminating engineering - Part 100: Melanopic effects of ocular light on human beings - Quantities, symbols and action spectra," (2015).

23

European Committee for Standardization, (CEN), "NPR-CEN/TR 16791:2017. Quantifying irradiance for eye-mediated non-image-forming effects of light in humans," (2017).

24

W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, "Theimpact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design," Build Environ (2018).

25

G. Esquiva, P. Lax, J. J. Perez-Santonja, J. M. Garcia-Fernandez, N. Cuenca, "Loss of Melanopsin-Expressing Ganglion Cell Subtypes and Dendritic Degeneration in the Aging Human Retina," FrontAging Neurosci9, 79 (2017).

26

L. Bellia, A. Pedace, G. Barbato, "Lighting in educational environments: An example of a complete analysis of the effects of daylight and electric light on occupants," Build Environ68, 50-65 (2013).

27

V. Mottram, B. Middleton, P. Williams, J. Arendt, "The impact of bright artificial white and 'blue-enriched' light on sleep and circadian phase during the polar winter," J Sleep Res20, 154-161 (2011).

28

J. van Hoof, M. P. J. Aarts, C. G. Rense, A. M. C. Schoutens, "Ambient bright light in dementia: Effects on behaviour and circadian rhythmicity," Build Environ44, 146-155 (2009).

29

M. S. Rea, M. G. Figueiro, J. D. Bullough, "Circadian photobiology: An emerging framework for lighting practice and research," Light Res Technol34, 177-187 (2002).

30

Y. Kim, A. Choi, J. Jeong, "Applying micro genetic algorithm to numerical model for luminous intensity distribution of planar prism LED luminaire," Opt Commun293, 22-30 (2013).

31

D. Kim, B. Han, Y. Kim, "Degradation analysis of secondary lens system and its effect on performance of LED-based luminaire," Microelectron Reliab54, 131-137 (2014).

32

P. Khademagha, M. Aries, A. Rosemann, E. Van Loenen, "Why directionality is an important light factor for human health to consider in lighting design?" International Journal of Sustainable Lighting18, 3-8 (2016).

33

R. J. Reiter, "Pineal melatonin: Cell biology of its synthesis and of its physiological interactions," Endocr Rev12, 151-180 (1991).

34

C. A. Czeisler, J. F. Duffy, T. L. Shanahan, E. N. Brown, J. F. Mitchell, D. W. Rimmer, J. M. Ronda, E. J. Silva, J. S. Allan, J. S. Emens, D. Dijk, R. E. Kronauer, "Stability, precision, and near-24-hour period of thehuman circadian pacemaker," Science284, 2177-2181 (1999).

35

S. W. Lockley, E. E. Evans,F. A. J. L.Scheer, G. C. Brainard, C. A. Czeisler, D. Aeschbach, "Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogramin humans," Sleep29, 161-168 (2006).