Generador de peines de frecuencias ópticas mediante circuito integrado fotónico, con moduladores electro-ópticos

V. Corral, G. Gordón, R. Guzmán, G. Carpintero


Descargar artículo

Información básica

Volumen

V52 - N1 / 2019 Ordinario

Referencia

50020:1-9

DOI

http://doi.org/10.7149/OPA.52.1.50020

Idioma

Spanish

Etiquetas

Optica integrada, Peine de frecuencias ópticas, Modulador electro-óptico

Resumen

Presentamos los resultados de las mediciones de un circuito integrado fotónico cuya finalidad es implementar un generador de peine de frecuencias ópticas (OFCG) basado en un anillo recirculante utilizando moduladores de fase electro-ópticos (EOPM). El diseño se basa en los bloques funcionales de la plataforma genérica de integración de OCLARO Tech. El peine óptico produce múltiples longitudes de onda, equiespaciadas por la frecuencia RF de entrada proporcionada por un sintetizador externo, a partir de una longitud de onda semilla. Esta λ semilla puede ser de carácter externa o interna (on-chip), por medio de un láser integrado monomodo DBR (Distributed Bragg Reflector), para desarrollar un OFCG totalmente integrado. La ventaja de esta estructura es que se trata de un OFCG compacto de pequeñas dimensiones (chip de 6 x 2 mm), cuyos elementos se interconectan con guías de onda de InP que reemplaza a la fibra óptica, evitando variaciones térmicas que afecten la señal generada. Para nuestro conocimiento, es la primera vez que se realizan mediciones en este tipo de estructuras.

Referencias

0

E. P. Cano, C. de Dios Fernandez, Á. R. C. Serrano, M. Ortsiefer, P. Meissner, P. Acedo, "Experimental Study of VCSEL-Based Optical Frequency Comb Generators," in IEEE Photonics Technology Letters 26, 2118-2121

1

Z.Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, G. Roelkens, "A III-V-on-Si ultradense comb laser," Light: Science & Applications 6 (2017)

2

S. Bennett, B. Cai, E. Burr, O. Gough, A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551–553 (1999).

3

Silva, C.F.C., Seeds, A.J., "A dense WDM source for high spectral efficiency system using comb generation and SG-DBR injection-locked laser filtering", European Conference on Optical Communication (2001).

4

International Telecommunications Union. https://www.itu.int/rec/T-REC-G.692-199810-I/es

5

P.Shen, Nathan J. Gomes, Phillip A. Davies, Peter G. Huggard, Brian N. Ellison, "Analysis and demonstration of a fast tunable fiber-ring based optical frequency comb generator", J. Lightw. Technol., 25, 3257-3264 (2007).

6

T. Sakamoto, T. Kawanishi, M. Izutsu, "Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator", Electronic Letters 43, 1039-1040 (2007).

7

J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, J. Yu, L. Tao, "Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset," Opt. Lett. 38, 552–4 (2013).

8

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, "Optical Carrier Supply Module Using Flattened Optical Multicarrier Generation Based On Sinusoidal Amplitude and Phase Hybrid Modulation", Journal of Lightwave Technology 21, 2705-2714 (2003).

9

K. Igarashi, K. Katoh, K. Kikuchi, K. Imai, M. Kourogi, "Generation of 10-GHz 2-ps optical pulse train over the C band based on an optical comb generator and its application to 160-Gbit/s OTDM systems," 34th European Conference on Optical Communication, Brussels, pp. 1-2, (2008).

10

Y. Dou, H. Zhang, M. Yao, "Generation of Flat Optical-Frequency Comb Using Cascaded Intensity and Phase Modulators," in IEEE Photonics Technology Letters 24, 727-729 (2012).

11

G. Ducournau, Y. Yoshimizu, S. Hisatake, F. Pavanello, E. Peytavit, M. Zaknoune, T. Nagatsuma, J.F. Lampin, "Coherent THz communication at 200 GHz using a frequency comb, UTC-PD and electronic detection", Electronics Letters 50, 386–388 (2014).

12

T. Saikai, T. Yamamoto, H. Yasaka and E. Yamada., "Flat-top Optical Frequency Comb Block Generation using InP-based Mach-Zehnder Modulator", in the 25th International Conference on Indium Phosphide and Related Materials, IPRM2013, Kobe, Japan, paper MoD3-3 (2013).

13

K. Ho, J. Kahn, "Optical frequency comb generator using phase modulation in amplified circulating loop," Photonics Technol. Lett. IEEE 5, 721–725 (1993).

14

P. Shen, N. J. Gomes, P. A. Davies, P. Shillue, P. G. Huggard, B. N. Ellison, "Fiber ring based optical frequency comb generator with comb line spacing tuneability," LEOS Summer Topical Meetings, IEEE (2005).

15

N. Dupuis, C. R. Doerr, L. Zhang, L. Chen, N. J. Sauer, P. Dong, L. L. Buhl, D. Ahn, "InP-based comb generator for optical OFDM", Journal of Lightwave Technology 30, 466–472 (2012).

16

P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, "Generation of 2 THz Span Optical Comb in a Tunable Fiber Ring Based Optical Frequency Comb Generator", Microwave Photonics, 2007 IEEE International Topical Meeting on, Victoria, BC, 46-49 (2007).

18

J. Zhao, "Integrated Multi-Wavelenght Transmitter using Filtered-Feedback ", Thesis dissertation, The Netherlands (2013).

19

L. Ponnampalam, M. Fice, H. Shams, C. Renaud, A. Seeds, "Optical comb for generation of a continuously tunable coherent THz signal from 122.5  GHz to >2.7 THz," Opt. Lett. 43, 2507-2510 (2018)