High-Speed Visualization of Nanopowder Combustion in Air

F. A. Gubarev, M.S. Klenovskii, L. Li, A.V. Mostovshchikov, A.P. Ilyin


Descargar artículo

Información básica

Volumen

V51 - N4 / 2018 Ordinario

Referencia

51003:1-7

DOI

http://doi.org/10.7149/OPA.51.4.51003

Idioma

English

Etiquetas

Aluminum nanopowder, high-temperature combustion, brightness amplification, copper bromide laser, high-speed imaging, laser projection microscope

Resumen

The paper discusses the methods of high-speed imaging of high-temperature processes in a real time mode: passive registration in the own light, usage of laser illumination, and using the laser monitor. The visualization results of combustion in air of Al nanopowder and thermite Al-Fe2O3 mixture are presented. The perspectives of application of laser monitors in NDE are considered, particularly for the study of laser ignition of thermite mixtures and solid fuels.

Referencias

0

A. A. Gromov, U. Teipel, Metal Nanopowders: Production, Characterization, and Energetic Applications, Wiley-VCH, Weinheim (2014).

1

A. P. Il'in, A. V. Mostovshchikov, N. A. Timchenko, "Phase formation sequence in combustion of pressed aluminum nanopowder in air studied by synchrotron radiation," Combust Explo Shock 49, 320-324 (2013)

2

D. S. Sundaram, V. Yang, E. Zarko, "Combustion of nano aluminum particles (Review)," Combust Explo Shock 51, 173-196 (2015).

3

D. S. Sundaram, P. Puri, V. Yang, "A general theory of ignition and combustion of nano- and micronsized aluminum particles," Combust Flame 169, 94-109 (2016).

4

W. H. Hunt, "New directions in aluminum-based P/M materials for automotive applications," Inter J Powd Metal 36, 50-56 (2000).

5

T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie, A. Raymond, R. A. Cutler, "High-thermalconductivity aluminum nitride ceramics: The effect of thermodynamic, kinetic, and microstructural factors," J Am Ceram Soc 80, 1421-1435 (1997).

6

V. V. Zakorzhevskii, I. P. Borovinskaya, "Combustion synthesis of submicron AlN particles," Inorg Mater 51, 566-571 (2015).

7

J. Sivan, Y. Haas, "Laser ignition of various pyrotechnic mixtures - an experimental study," Propell Explos Pyrotech 40, 755-758 (2015).

8

N. M. Bulgakova, A. N. Panchenko, V. P. Zhukov, S. I. Kudryashov, A. Pereira, W. Marine, T. Mocek, A. V. Bulgakov, "Impacts of ambient and ablation plasmas on short- and ultrashort-pulse laser processing of surfaces," Micromachines 5, 1344-1372 (2014).

9

C. E. Little, Metal Vapor Lasers: Physics, Engineering & Applications, Chichester: John Willey & Sons Ltd. (1998).

10

R. Biswal, G. K. Mishra, P. K. Agrawal, S. V. Nakhe, S. K. Dixit, "Studies on the spectral purity of copperhydrogen bromide laser radiations," Appl Opt 52, 3269-327 (2013).

11

F. A. Gubarev, L. Li, M. S. Klenovskii, D. V. Shiyanov, "Spatial-temporal gain distribution of a CuBr vapor brightness amplifier," Appl Phys B 122, 284 (2016).

12

M. J. Withford, D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, J. A. Piper, "Advances in copper laser technology: kinetic enhancement," Prog Quant Electron 28, 165-196 (2004).

13

D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. K. Kirkov, C. E. Little, N. V. Sabotinov, N. K. Vuchkov, "Copper bromide laser of 120 W average output power," IEEE J. Quantum Electron 33, 705-709 (1997).

14

A. S. Skripnichenko, A. N. Soldatov, N. A. Yudin, "Method of two-pulse frequency regulation of coppervapor laser parameters," J Russ Las Res 16, 134-137 (1995).

15

Optical Systems with Brightness Amplifiers, Edited by G.G. Petrash, Moscow: Nauka (1991).

16

V. M. Batenin, I. I. Klimovskii, L. A. Selezneva, "Research of surfaces of electrodes of a carbon arc during its burning," Doklady Akademii Nauk 303, 857-860 (1988).

17

D. V. Abramov, S. M. Arakelian, A. F. Galkin, I. I. Klimovskii, A. O. Kucherik, V. G. Prokoshev, "On the possibility of studying the temporal evolution of a surface relief directly during exposure to highpower radiation," Quantum Electron 36, 569-575 (2006).

18

A. P. Kuznetsov, R. O. Buzhinskij, K. L. Gubskii, A. S. Savjolov, S. A. Sarantsev, A. N. Terekhin, "Visualization of plasma-induced processes by a projection system with a Cu-laser-based brightness amplifier," Plasma Phys Rep 36, 428-437 (2010).

19

G. S. Evtushenko, M. V. Trigub, F. A. Gubarev, T. G. Evtushenko, S. N. Torgaev, D. V. Shiyanov, "Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting," Rev Sci Instrum 85, 033111 (2014).