Cambios en la calidad de la imagen retiniana de los ojos pseudofáquicos

M. S. Millán, A.G. Marrugo, F. Alba-Bueno


Descargar artículo

Información básica

Volumen

V51 - N4 / 2018 Ordinario

Referencia

50015:1-8

DOI

http://doi.org/10.7149/OPA.51.4.50015

Idioma

English

Etiquetas

Análisis digital de imagen, calidad de imagen, imagen de fondo de ojo, lente intraocular, pseudofaquia, cámara no-midriática de retina

Resumen

En este trabajo estudiamos los cambios producidos en la calidad de imágenes del fondo de ojo de pacientes antes y después de cirugía de catarata con implantación de lente intraocular, y proponemos una medida para evaluar esos cambios cuantitativamente. Diversos factores relacionados con el sistema óptico del ojo, los medios oculares y las características específicas de la lente intraocular implantada pueden influir en la calidad de la imagen digital adquirida con una cámara de retina no midriática. Ilustramos el estudio con varios casos tomados de la práctica clínica. Un par de imágenes del fondo de ojo pre y post-operatorias representa cada caso. Para medir la calidad de la imagen, llevamos a cabo un cálculo de la anisotropía en cada imagen. Los resultados muestran que después de la cirugía con implante de lente intraocular, una imagen de fondo de ojo suele ser mucho más brillante, nítida y de mayor calidad. Sin embargo, esta regla práctica puede verse alterada por varias condiciones. Por ejemplo, el diseño multifocal del implante intraocular después de una extracción de cristalino transparente. La medida basada en la anisotropía demostró ser una herramienta adecuada para evaluar cuantitativamente los cambios de calidad entre las imágenes del fondo de ojo pre y postoperatorias.

Referencias

0

M. D. Abramoff, M. Garvin, and M. Sonka, "Retinal Imaging and Image Analysis," Biomedical Engineering, IEEE Reviews in, 3, pp. 169-208, (2010).

1

L. Abdel-Hamid, A. El-Rafei, S. El-Ramly, G. Michelson, and J. Hornegger, "Retinal image quality assessment based on image clarity and content," J. Biomed. Opt., 21(9), p. 096007, (2016).

2

A. D. Fleming, S. Philip, K. A. Goatman, J. A. Olson, and P. F. Sharp, "Automated assessment of diabetic retinal image quality based on clarity and field definition," Invest Ophth Vis Sci, 47(3), pp. 1120-1125, (2006).

3

A. G. Marrugo, M. S. Millan, G. Cristóbal, S. Gabarda, and H. C. Abril, "No-reference quality metrics for eye fundus imaging," presented at the CAIP'11: Proceedings of the 14th international conference on Computer analysis of images and patterns, 6854 pp. 486-493 (2011).

4

L. Giancardo, M. D. Abramoff, E. Chaum, T. Karnowski, F. Meriaudeau, and K. Tobin, "Elliptical local vessel density: A fast and robust quality metric for retinal images.," Annual Int Conf of the IEEE Engineering in Medicine and Biology Society, 1(4), pp. 3534-1179, (2008).

5

J. L. Alió, P. Schimchak, R. Montés-Micó, and A. Galal, "Retinal image quality after microincision intraocular lens implantation," Journal of Cataract & Refractive Surgery, 31(8), pp. 1557-1560, (2005).

6

D. Siedlecki, M. Zajac, and J. Nowak, "Retinal images in a model of a pseudophakic eye with classic and hybrid intraocular lenses," Journal of Modern Optics, 55(4) pp. 653-669, (2008).

7

H. Guo, A. V. Goncharov, and C. Dainty, "Comparison of retinal image quality with spherical and customized aspheric intraocular lenses," Biomedical Optics Express, 3(4), pp. 681-691, (2012).

8

H. Zhao and M. A. Mainster, "Ghost Images And Retinal Image Quality In Pseudophakic Eyes," Invest Ophth Vis Sci, 52(14), pp. 6184-6184, (2011).

9

A. G. Marrugo, M. S. Millan, G. Cristóbal, S. Gabarda, and H. C. Abril, "Anisotropy-based robust focus measure for non-mydriatic retinal imaging," J. Biomed. Opt., 17(7), p. 076021, (2012).

10

M. Subbarao, T. Choi, and A. Nikzad, "Focusing techniques," Optical Engineering, 32(11), pp. 2824- 2836, (1993).

11

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt., 13(2), p. 024008, (2008).

12

G. Wallace, "The JPEG still picture compression standard," IEEE Trans on Consumer Electronics, 38(1), pp. xviii-xxxiv, (1992).

13

J. Ramirez, A. Garcia, P. Fernandez, L. Parrilla, and A. Lloris, "A new architecture to compute the discrete cosine transform using the quadratic residue number system," IEEE International Symposium on Circuits and Systems, 5, pp. 321-324, (2000).

14

C. Stewart, Chia-Ling Tsai, and B. Roysam, "The dual-bootstrap iterative closest point algorithm with application to retinal image registration," Medical Imaging, IEEE Transactions on, 22(11), pp. 1379- 1394, (2003).

15

L. Fernández-Vega, J. F. Alfonso, and T. Villacampa, "Clear lens extraction for the correction of high myopia," Ophthalmology, 110(12), pp. 2349-2354, (2003).

16

M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, and M. D. Abramoff, "Comparative study of retinal vessel segmentation methods on a new publicly available database," presented at the Medical Imaging 2004: Image Processing, 2004, 5370, pp. 648-657 (2004).

17

A. Hoover and M. Goldbaum, "Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels," Medical Imaging, IEEE Transactions on, 22(8), pp. 951-958, (2003).

18

B. Al-Diri, A. Hunter, D. Steel, M. Habib, T. Hudaib, and S. Berry, "A reference data set for retinal vessel profiles," presented at the Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 2262-2265 (2008).