Preliminary results of an analytical model to determine the internal quantum efficiency of a predictable quantum efficient detector

E. Borreguero, A. Ferrero, C. K. Tang, J. Gran, A. Pons, J. Campos, M. L. Hernanz


Download Paper

Base Information

Volume

V50 - N4 / 2017 Ordinario

Reference

401-409

DOI

http://doi.org/10.7149/OPA.50.4.49027

Language

English

Keywords

Internal quantum efficiency, photodiode, PQED.

Abstract

The potential of predictable quantum efficient detectors (PQEDs) as optical radiant power primary standard, based on photoelectric effect in silicon semiconductor, has been proved. Until now, the internal quantum efficiency (IQE) of a PQED is only predicted, from the design and setup parameters of the two photodiodes of this radiometer, by means of simulation software for semiconductor devices. This work presents, as alternative method, an analytical model based on Ferrero et al. photocurrent analysis, which considers the different internal regions of the photodiode and the characteristics of the incident beam. The IQE grows with the reverse bias voltage applied to the photodiodes and the lifetime of the charge carriers in the bulk, while IQE decreases when the surface recombination velocity and the doping concentration of the substrate are increased. The IQE results of the analytical model are similar to simulations for wavelengths between 400 nm and 700 nm. Moreover, the analytical model predicts an increase of the IQE with the irradiance, at certain levels of optical power due to the supra-responsivity of the photodiode.

References

2

T. E. Hansen, "Silicon UV-photodiodes using natural inversion layers", Physica Scripta 18, 471-475 (1978).

3

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, M.L. Rastello, "Predictable quantum efficient detector: I. Photodiodes and predicted responsivity", Metrologia 50, 385-394 (2013).

4

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, L. Werner, "Predictable quantum efficient detector: II. Characterization and confirmed responsivity", Metrologia 50, 395-401 (2013).

5

J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen and I. Müller, "Simulations of a predictable quantum efficient detector with PC1D", Metrologia 49, 130-134 (2012).

6

A. Ferrero, J. Campos, A. Pons, A. Corrons, "New model for the internal quantum efficiency of photodiodes based on photocurrent analysis", Applied Optics 44, 208-216 (2005).

7

M. Sildoja, F. Manoocheri and E. Ikonen, "Reflectance calculations for predictable quantum efficient detector", Metrologia 46, 151-154 (2009).

8

A. S. Grove, Physics and technology of semiconductors devices. Willey, New York (1967).

9

M. A. Green, "Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients", Solar Energy Materials & Solar Cells 92, 1305-1310 (2008).

10

C. M. Herzinger, B. Johs, W. A. McGaham, J. A. Woollam and W. Paulson "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation", Journal of Applied Physics 83, 3323-3336 (1998).