Using UV-C radiation and image analysis for fungus control in tomato plants

M. A. Valencia, L. F. Patiño, J. A. Herrera-Ramírez, D. Castañeda, J. A. Gómez, J. C. Quijano


Download Paper

Base Information

Volume

V50 - N4 / 2017 Ordinario

Reference

369-378

DOI

http://doi.org/10.7149/OPA.50.4.49073

Language

English

Keywords

Powdery mildew; Image analysis; Physical management of disease.

Abstract

The plant pathogenic fungi are the greatest threat to agriculture in the world; to counteract its effect synthetic chemical fungicides are used, which cause adverse effects on human health and the environment. Physical methods to control pathogens are emerging as an alternative for managing crop diseases; however, they have been little explored. Tomato (Solanum lycopersicum) is the most frequently cultivated vegetable in the world and it grows in a wide range of climates, both field and greenhouse. One of the most limiting factors for tomato production is the foliar disease known as powdery mildew. The yield and quality of the fruit can be reduced because the disease can develop rapidly and severely affected leaflets die. In this paper, the effect of UV-C (254 nm) on the development of powdery mildew under greenhouse conditions was evaluated. The leaflets were submitted to different UV-C exposure times and with the acquisition of RGB images and image analysis the growth rate of the lesion was determined. The exposure times that did not cause visible injuries in healthy leaflets were used to measure the effect on leaflets with the disease. After natural infection, the lesion area, the number of total lesions and the growth rate with respect to the initial lesion area were determined. Comparing with non-treated leaflets, 30 s or 60 s applications of UV-C each 48 h for 10 days, significantly reduced powdery mildew severity on tomato leaflets. We also compared traditional growth rate determination using a caliper with a custom program based on image acquisition and analysis, reporting that the latest is a more complete system to follow accurately the disease evolution. This work is an important approach of applying light to agricultural problems noninvasively in preharvest conditions, which has been poorly explored in agriculture, and it demonstrates the application of image analysis in the study of important agricultural variables.

References

0

R. Yin, T. Dai, P. Avci, A. E. S. Jorge, W. C. de Melo, D. Vecchio, Y.-Y. Huang, A. Gupta, and M. R. Hamblin, "Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond", Curr. Opin. Pharmacol. 13, 731–762 (2013).

1

E. Levetin, R. Shaughnessy, C. A. Rogers, and R. Scheir, "Effectiveness of Germicidal UV Radiation for Reducing Fungal Contamination within Air-Handling Units", Appl. Environ. Microbiol. 67, 3712–3715 (2001).

2

B. M. Sutherland, "Action spectroscopy in complex organisms: potentials and pitfalls in predicting the impact of increased environmental UVB", J. Photochem. Photobiol. B Biol. 31, 29–34 (1995).

3

G. J. S. Jenkins, B. Burlinson, and J. M. Parry, "The polymerase inhibition assay: A methodology for the identification of DNA-damaging agents", Mol. Carcinog. 27, 289–297 (2000).

4

I. S. Booij-James, S. K. Dube, M. A. K. Jansen, M. Edelman, and A. K. Mattoo, "Ultraviolet-B Radiation Impacts Light-Mediated Turnover of the Photosystem II Reaction Center Heterodimer in Arabidopsis Mutants Altered in Phenolic Metabolism", Plant Physiol. 124, 1275–1284 (2000).

5

M. Heijde and R. Ulm, "UVB photoreceptor-mediated signalling in plants", Trends Plant Sci. 17, 230–237 (2012).

6

P. Narayanasamy, Postharvest Pathogens and Disease Management, John Wiley & Sons, Inc., Hoboken, NJ, USA, (2005).

7

G. Romanazzi, A. Lichter, F. M. Gabler, and J. L. Smilanick, "Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes", Postharvest Biol. Technol. 63, 141–147 (2012).

8

A. I. Darras, I. Bali, and E. Argyropoulou, "Disease resistance and growth responses in Pelargonium×hortorum plants to brief pulses of UV-C irradiation", Sci. Hortic. (Amsterdam). 181, 95–101 (2015).

9

C. Ouhibi, H. Attia, P. Nicot, F. Lecompte, V. Vidal, M. Lachaâl, L. URBAN, and J. Aarrouf, "Effects of nitrogen supply and of UV-C irradiation on the susceptibility of Lactuca sativa L to Botrytis cinerea and Sclerotinia minor", Plant Soil 393, 35–46 (2015).

10

S. Klärner, B. Flemming, and B. Berkelmann-Löhnertz, "Studies on mould prevention in viticulture by means of UV-C application of vines (Vitis vinifera L.)", Landtechnik 70, 139–149 (2015).

11

FAO, "El tomate ocupa en el mundo casi cinco millones de hectáreas", Hortoinfo.es (2014).

12

G. Agrios, Plant Pathology, Elsevier B.V., Burlington, MA, (2005).

13

W. B. Jones, "Source of Inoculum, Yield, and Quality of Tomato as Affected by Leveillula taurica", Plant Dis. 71, 266 (1987).

14

L. Kiss, R. T. a. Cook, G. S. Saenz, J. H. Cunnington, S. Takamatsu, I. Pascoe, M. Bardin, P. C. Nicot, Y. Sato, and A. Y. Rossman, "Identification of two powdery mildew fungi, Oidium neolycopersici sp. nov. and O. lycopersici, infecting tomato in different parts of the world", Mycol. Res. 105, 684–697 (2001).

15

J. Correll, T. Gordon, and V. Elliott, "Powdery mildew of tomato: The effect of planting date and triadimefon on disease onset, progress, incidence, and severity.", Phytopathology 78, 512–519 (1988).

16

J. Palti, "TheLeveillula mildews", Bot. Rev. 54, 423–535 (1988).

17

M. Brand, Y. Messika, Y. Elad, D. Rav David, and A. Sztejnberg, "Spray treatments combined with climate modification for the management of Leveillula taurica in sweet pepper", Eur. J. Plant Pathol. 124, 309–329 (2009).

18

P. Kromann, W. G. Pérez, A. Taipe, E. Schulte-Geldermann, B. P. Sharma, J. L. Andrade-Piedra, and G. A. Forbes, "Use of Phosphonate to Manage Foliar Potato Late Blight in Developing Countries", Plant Dis. 96, 1008–1015 (2012).

19

W. Hollomon and E. Wheeler, "Controlling powdery mildews with chemistry", Powdery Mildews A Compr. Treatise 249–255 (2002).

20

L. Kiss, "A review of fungal antagonists of powdery mildews and their potential as biocontrol agents", Pest Manag. Sci. 59, 475–483 (2003).

21

R. R. Bélanger and C. Labbé, "Control of powdery mildews without chemicals: prophylactic and biological alternatives for horticultural crops", Powdery Mildews A Compr. TreatiseThe powdery mildews a Compr. treatise 256–267 (2002).

22

A. Suthaparan, A. Stensvand, K. A. Solhaug, S. Torre, K. H. Telfer, A. K. Ruud, L. M. Mortensen, D. M. Gadoury, R. C. Seem, and H. R. Gislerø d, "Suppression of Cucumber Powdery Mildew by Supplemental UV-B Radiation in Greenhouses Can be Augmented or Reduced by Background Radiation Quality", Plant Dis. 98, 1349–1357 (2014).

23

A. Suthaparan, A. Stensvand, K. A. Solhaug, S. Torre, L. M. Mortensen, D. M. Gadoury, R. C. Seem, and H. R. Gislerø d, "Suppression of Powdery Mildew ( Podosphaera pannosa ) in Greenhouse Roses by Brief Exposure to Supplemental UV-B radiation", Plant Dis. 96, 1653–1660 (2012).

24

W. Van Hemelrijck, S. Van Laer, S. Hoekstra, A. Aiking, and P. Creemers, "UV-c radiation as an alternative tool to control powdery mildew on apple and strawberry.", Proc. Eco-fruit Conf. 99–105 (2010).

25

A. Suthaparan, K. A. Solhaug, N. Bjugstad, H. R. Gislerød, D. M. Gadoury, and A. Stensvand, "Suppression of Powdery Mildews by UV-B: Application Frequency and Timing, Dose, Reflectance, and Automation", Plant Dis. 100, 1643–1650 (2016).

26

I. M. Scotford and P. C. H. Miller, "Applications of Spectral Reflectance Techniques in Northern European Cereal Production: A Review", Biosyst. Eng. 90, 235–250 (2005).

27

L. M. Romualdo, P. H. C. Luz, F. F. S. Devechio, M. a. Marin, A. M. G. Zúñiga, O. M. Bruno, and V. R. Herling, "Use of artificial vision techniques for diagnostic of nitrogen nutritional status in maize plants", Comput. Electron. Agric. 104, 63–70 (2014).

28

E. Saldaña, R. Siche, M. Luján, and R. Quevedo, "Review: computer vision applied to the inspection and quality control of fruits and vegetables", Brazilian J. Food Technol. 16, 254–272 (2013).

29

J. G. Barbedo, "Digital image processing techniques for detecting, quantifying and classifying plant diseases.", Springerplus 2, 660–671 (2013).

30

C. H. Bock, G. H. Poole, P. E. Parker, and T. R. Gottwald, "Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging", CRC. Crit. Rev. Plant Sci. 29, 59–107 (2010).

31

D. A. Costa Lage, W. A. Marouelli, H. da S. S. Duarte, and A. C. Café-Filho, "Standard area diagrams for assessment of powdery mildew severity on tomato leaves and leaflets", Crop Prot. 67, 26–34 (2015).

32

L. V Madden and G. Hughes, The Study of Plant Disease Epidemics, APS Press, St. Paul, MN, (2007).

33

F. W. Nutter, Jr., "Assessing the Accuracy, Intra-rater Repeatability, and Inter-rater Reliability of Disease Assessment Systems", Phytopathology 83, 806 (1993).

34

A. Reis, L. S. Boiteux, M. L. Paz-lima, P. P. Silva, and C. A. Lopes, "New hosts of Oidiopsis haplophylli in the Solanaceae Family in Brazil", Mycol. Res. 195–198 (2005).

35

R. T. Sherwood, "Weibull distribution of lesion size in the stagonospora leaf-spot of orchardgrass", Phytopathology 77, 715–717 (1987).

36

K. M. Sigulas, R. R. Hill, and J. E. Ayers, "Genetic analysis of exserohilum turcicum lesion expansion on corn", Phytopathology 78, 149–153 (1988).

37

L. A. Furman, N. Lalancette, and J. F. White, "Peach rusty spot epidemics: Temporal analysis and relationship to fruit growth", Plant Dis. 87, 366–374 (2003).

38

E. A. Moya, L. R. Barrales, and G. E. Apablaza, "Assessment of the disease severity of squash powdery mildew through visual analysis, digital image analysis and validation of these methodologies", Crop Prot. 24, 785–789 (2005).

39

J. Castaño Monsalve, J. G. Ramírez Gil, L. F. Patiño Hoyos, and J. G. Morales Osorio, "Alternativa para el manejo de Phytophthora infestans (Mont.) de Bary en Solanum betaceum Cav. mediante inductores de resistencia", Rev. Protección Veg. 204–212 (2015).

40

H. R. Kang, Computational Color Technology, SPIE Press, Bellingham, (2006).

41

G. Sharma, W. Wu, and E. N. Dalal, "The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations", Color Res. Appl. 30, 21–30 (2005).

42

A. C. Kneuttinger, G. Kashiwazaki, S. Prill, K. Heil, M. Müller, and T. Carell, "Formation and Direct Repair of UV-induced Dimeric DNA Pyrimidine Lesions", Photochem. Photobiol. 90, 1–14 (2014).

43

M. J. Dagley, I. E. Gentle, T. H. Beilharz, F. A. Pettolino, J. T. Djordjevic, T. L. Lo, N. Uwamahoro, T. Rupasinghe, D. L. Tull, M. McConville, C. Beaurepaire, A. Nantel, T. Lithgow, A. P. Mitchell, and A. Traven, "Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2", Mol. Microbiol. 79, 968–989 (2011).

44

A. Suthaparan, K. A. Solhaug, N. Bjugstad, H. R. Gislerød, D. M. Gadoury, and A. Stensvand, "Suppression of Powdery Mildews by UV-B: Application Frequency and Timing, Dose, Reflectance, and Automation", Plant Dis. 100, 1643–1650 (2016).

45

D. Marquenie, "Inactivation of conidia of Botrytis cinerea and Monilinia fructigena using UV-C and heat treatment", Int. J. Food Microbiol. 74, 27–35 (2002).

46

J. Liu, C. Stevens, V. A. Khan, J. Y. Lu, C. L. Wilson, O. Adeyeye, M. K. Kabwe, P. L. Pusey, E. Chalutz, T. Sultana, and S. Droby, "Application of ultraviolet-C light on storage rots and ripening of tomatoes", J. Food Prot. 56, 868–872 (1993).

47

R. Porat, A. Lers, S. Dori, L. Cohen, B. Weiss, A. Daus, C. Wilson, and S. Droby, "Induction of Chitinase and β-1,3-Endoglucanase Proteins by UV Irradiation and Wounding in Grapefruit Peel Tissue", Phytoparasitica 27, 233–238 (1999).

48

M. C. Canale, E. A. Benato, P. Cia, M. L. Haddad, and S. F. Pascholati, "In vitro effect of UV-C irradiation on Guignardia citricarpa and on postharvest control of citrus black spot", Trop. Plant Pathol. 36, 356–361 (2011).

49

S. L. Sukanya and O. Spring, "Influence of temperature and ultra-violet light on viability and infectivity of Peronospora tabacina sporangia", Crop Prot. 51, 14–18 (2013).

50

S. J. L. Mintoff, J. E. Rookes, and D. M. Cahill, "Sub-lethal UV-C radiation induces callose, hydrogen peroxide and defence-related gene expression in Arabidopsis thaliana", Plant Biol. 17, 703–711 (2015).

51

H. L. Park, S.-W. Lee, K.-H. Jung, T.-R. Hahn, and M.-H. Cho, "Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice", Phytochemistry 96, 57–71 (2013).

52

H. Nilsson, "Remote Sensing and Image Analysis in Plant Pathology", Can. J. Plant Pathol. 489–527 (1995).

53

X. Cao, Y. Luo, Y. Zhou, X. Duan, and D. Cheng, "Detection of powdery mildew in two winter wheat cultivars using canopy hyperspectral reflectance", Crop Prot. 45, 124–131 (2013).

54

C. H. Bock, P. E. Parker, A. Z. Cook, and T. R. Gottwald, "Visual Rating and the Use of Image Analysis for Assessing Different Symptoms of Citrus Canker on Grapefruit Leaves", Plant Dis. 92, 530–541 (2008).