Connectivity-based segmentation of retinal vessels in eye fundus images

M. Ralló, M. S. Millán


Download Paper

Base Information

Volume

V50 - N4 / 2017 Ordinario

Reference

359-368

DOI

http://doi.org/10.7149/OPA.50.4.49070

Language

English

Keywords

Eye fundus image, retinal vasculature, blood vessel segmentation, digital image analysis, computer-aided diagnosis.

Abstract

A new unsupervised method for segmentation of objects of diverse nature with the common feature of connectivity (e.g. branching trees or net-shaped objects) is proposed. A preferred application to the vasculature segmentation of retinal images has been illustrated using images from DRIVE database. In the pre-processing stage, the method overcomes the common problem of non-uniform illumination of eye fundus images. The method follows with an iterative algorithm that starts with a seed and adds, at each step, a new vessel segment connected to the previously segmented part. The result preserves the connectivity as a distinct feature of the retinal vessel tree. The segmentation performance is evaluated through common signal detection metrics: sensitivity, specificity and accuracy.

References

0

R. Bock, J. Meier, L. G. Nyúl, J. Hornegger & G. Michelson, "Glaucoma risk index: automated glaucoma detection from color fundus images," Med Im Anal 14 (3), 471-481 (2010).

1

R. J. Winder, P. J. Morrow, I. N. McRitchie, J. R. Bailie, & P. M. Hart, "Algorithms for digital image processing in diabetic retinopathy," Comput Med Imag and Grap 33 (8), 608-622 (2009).

2

M. Matsui, T. Tashiro, K. Matsumoto & S. Yamamoto, "A study on automatic and quantitative diagnosis of fundus photographs. I. Detection of contour line of retinal blood vessel images on color fundus photographs (author's transl.)," Nippon Ganka Gakkai Zasshi 77 (8), 907–918 (1973).

3

S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson & M.Goldbaum, "Detection of blood vessels in retinal images using two-dimensionalmatched filters," IEEE Trans Med Imag 8 (3), 263-269 (1989).

4

J. V. Soares, J. J., Leandro, R. M., Cesar, H. F., Jelinek, & M. J. Cree, "Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification," IEEE Trans on Med Imag 25 (9), 1214-1222 (2006).

5

M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen & S. A. Barman, "Blood vessel segmentation methodologies in retinal images-a survey," Comput Meth Prog Biomed 108, 407-433 (2012).

6

M. D. Abràmoff, M. Garvin, M. Sonka, "Retinal Imaging and Image Analysis," IEEE Rev in Biomed Eng 3, 169-208 (2010).

7

B. Al-Diri, A. Hunter, D. Steel, & M. Habib, "Automated analysis of retinal vascular network connectivity," Comput Med Imag and Graph, 34 (6), 462-470 (2010).

8

E. M. Sigurðsson, S. Valero, J. A. Atli Benediktsson, J. Chanussot, H. Talbot & E.Stefánsson, "Automatic retinal vessel extraction based on directional mathematical morphology and fuzzy classification," Patt Recog Lett 47, 164–171(2014).

9

V. S. Joshi, M. K. Garvin, J. M. Reinhardt & M. D. Abràmoff, "Identification and reconnection of interrupted vessels in retinal vessel segmentation," Proc 8th IEEE Int Symp Biomed Imag, Nano Macro (ISBI), 1416-1420 (2011).

11

M. Ralló, M. S. Millán, "Connected iterative segmentation of retinal vessels from fundus images", Abstract Book of RIAO-OPTILAS 2016, Moraga, P. and Saavedra, C.; 21-25 November; CEFOP-UdeC-Concepción - Chile 2016. Page 222.

14

E. Trucco et al. "Validating retinal fundus image analysis algorithms: issues and a proposal," Invest Ophthalmol Vis Sci 54, 3546–3559 (2013).

15

A. Vogt, "Die Ophthalmoskopie im rotfreiem licht," in Graef Saemisch Handbuch der gesamten Augenheilkunde 3, (1925).

16

J. V. Soares, J. J. Leandro, R. M. Cesar, H. F. Jelinek & M. J. Cree, "Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification," IEEE Trans on Med Imag 25 (9), 1214-1222 (2006). http://www.repositoriodigital.ipn.mx/handle/123456789/7005

17

Cepeda-Fuentealba, S., Segmentación de vasos sanguíneos de retina usando selección de características mediantes distancia de bhattacharyya y algoritmos genéticos, para un clasificador por maximización de la entropía, Santiago, Chile: Universidad de Chile - Facultad de Ciencias Físicas y Matemáticas, (2016). http://repositorio.uchile.cl/handle/2250/138129

18

A. D. Hoover, V. Kouznetsova & M. Goldbaum, "Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response," IEEE Trans on Med Imag 19 (3), 203-210 (2000).