A spectrometer based on smartphones and a low-cost kit for transmittance and absorbance measurements in real-time

O. Ormachea, A. Villazón, R. Escalera


Download Paper

Base Information

Volume

V50 - N3 / 2017 Ordinario

Reference

239-249

DOI

http://doi.org/10.7149/OPA.50.3.49053

Language

English

Keywords

spectrometry, low cost, smartphones, absorbance, tanning liquors

Abstract

Recently, the use of smartphones has been proposed as a real option for developing measurement instruments in different areas (e.g. bio-sensors, spectroscopy, electro chemical sensor) due to their processing, visualization, connectivity and image capturing capabilities. In this work, we propose the development of a low-cost miniaturized spectrometer that uses the camera of an Android smartphone and processes the images in a self-developed software (spectrometric Android App). It includes a measurement kit with a cuvette holder, an optical fiber with a connecting element, and a high luminous efficiency white LED. The spectrometric Android App allows an initial wavelength calibration and a subsequent calibration for measuring absorbance/transmittance, to obtain spectral curves in real-time. We validated our prototype with a case study in the industrial area, by measuring the concentration of chrome in tanning liquors, and comparing the results with a calibrated conventional spectrophotometer. Thanks to our approach, measurements can be done in-situ and in real-time, thus allowing optimized tanning processes, without requiring expensive measurement equipment.

References

0

S. Ramirez, P. H. Carranza, J. Gutierrez, L. Garcia, S. Hernandez, "Aplicación en medicina de la espectroscopía de infrarrojo cercano", Medicina Interna de México 28, 365-370 (2012).

1

D. L. Andrews, A. A. Demidov, An Introduction to Laser Spectroscopy: Industrial Applications of Raman Spectroscopy. Springer (1995).

2

M. Popescu, M. Birlan , R. M. Gherase , A. B. Sonka , M. Naiman , C. P. Cristescu, "Applications of visible and infrared spectroscopy to astronomy", UPB Scientific Bulletin, Series A 3, 107-120 (2012).

3

P. Ropret, J. M. Madariaga, "Applications of Raman spectroscopy in art and archaeology", Journal of Raman Spectroscopy 45, 985–992 (2014).

4

F. Anabitarte, A. Cobo, J. M. Lopez-Higuera, "Laser-Induced Breakdown Spectroscopy: Fundamentals, Applications, and Challenges", ISRN Spectroscopy, 1-11 (2012).

5

Thorlabs "Cuvette Holder with Four Light Ports" https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=4982

6

Ocean Optics, ¨CUV-UV Cuvette Holder¨ http://oceanoptics.com/product/cuv-uv-cuvette-holder

7

D. W. Ball, The Basics of Spectroscopy. SPIE Press (2001).

8

The Open Source Computer Vision Library (OpenCV) http://opencv.org

10

A. Bavali, P. Parvin, S. Z. Mortazavi, S. S. Nourazar, "Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution", Biomedical Optics Express 6, 1679-1693 (2015). DOI

11

C. R. Escalera, L. Arteaga, A. Baldivieso, R. Vega, ¨Desarrollo y validación de un método espectrofotométrico/colorimétrico para la determinación de Cromo (III)) en licores residuales de piquelado-curtido¨, Investigación & Desarrollo 6, 88-97 (2006).

12

Centro de Promoción de Tecnologías Sostenibles (CPTS), ¨Guía técnica de producción más limpia para curtiembres: Bolivia¨. Natural Resources Management and Development Portal, USAID (2003).

13

E. W. Rice, R. B. Baird, A. D. Eaton, L.S. Clesceri (Editors), Standard Methods for the Examination of Water and Wastewater: Method 3111 Metals by Flame Atomic Absorption Spectrometry. American Public Health Association. American Water Works Association. Water Environment Federation, (2016).

14

E. W. Rice, R. B. Baird, A. D. Eaton, L.S. Clesceri (Editors), "Standard Methods for the Examination of Water and Wastewater: Method 3113: Metals by Electro-Thermal Atomic Absorption Spectrometry". American Public Health Association. American Water Works Association. Water Environment Federation, (2016).

15

C. Alcalde, P. Ormad, J. L. Ovelleiro, Validación de la Metodología para la Determinación de Be, Cd, Co, Cr, Mo, Ni, Pb, Sb y Sn en Aguas Continentales por ICP-MS (II). Tecnología del Agua, Madrid, España, (1999).

16

E. W. Rice, R. B. Baird, A. D. Eaton, L.S. Clesceri (Editors), Standard Methods for the Examination of Water and Wastewater: Method 3500: Chromium, Standard Methods for the Examination of Water and Wastewater. American Public Health Association. American Water Works Association. Water Environment Federation (2016).

17

M. L. Castro, K. Ikeda y D. Suarez, "Metodología para la Determinación de Cr+3, Anexo II de: Informe Técnico Sobre Minimización de Residuos en una Curtiembre", http://www.bvsde.paho.org/cdromrepi86/ fulltexts/eswww/fulltext/gtz/infomini/minianex.html#anex2

18

J.A. Perez, M. Pujol, Validación de Métodos Analíticos, Monografía Asociación Española de Farmacéuticos de la Industria. Hewlett Packard, Madrid (2001).

19

C. Matasaru, "Mobile Phone Camera Possibilities for Spectral Imaging", Master Thesis. University of Eastern Findland. (2014)