Experimental micrometer-displacement measurements based on optical vortices
N. Londoño, E. Rueda, J. A. Gómez, D. Amaya, A. Lencina
Download Paper
Base Information
Volume
V50 - N2 / 2017 Ordinario
Reference
173-180
DOI
http://doi.org/10.7149/OPA.50.2.49018
Language
English
Keywords
Optical Vortices, Metrology, Micro-displacement
Abstract
In this work, a system for measuring micrometer-displacements based on the characteristics of optical vortices is presented. In the proposal, a binary vortex-producing lens (BVPL) programmed to generate optimized optical vortices is transversally displaced from the optical axis, inducing perturbations on the optical characteristics of the vortices that are used as transduction parameters. Specifically, the method proposed theoretically by Anzolin et al. [18], which is based on the asymmetry of the intensity patterns of the off-axis optical vortices, is studied experimentally by using BVPLs. Experimental mplementation is completely described and compared with theoretical results, likewise, metrological characteristics of the experimental metrological system are analyzed. Based on the results, we experimentally confirm the possibility of creating high sensitivity metrological systems by using optical vortices, opening the door for new vortex metrology techniques.
References
J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London Ser. A 336, 165-190 (1974).DOI
Mohamed El Ketara and Etienne Brasselet, "Observation of Self-Induced Optical Vortex Precession,"Phys. Rev. Lett. 110, 233603 (2013).DOI
J. Leach, M. R. Dennis, J. Courtial and M. J. Padgett, "Vortex knots in light," New J. Phys. 7, 55 (2005).DOI
R. K. Tyson, M. Scipioni, and J. Viegas, "Generation of an optical vortex with a segmented deformable mirror," Appl. Opt. 47, 6300-6306 (2008).DOI
S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy,"Opt. Exp. 13, 689-694 (2005).DOI
J.A. Gómez, E. Rueda, Á. Salazar, M. Tebaldi, N. Bolognini, A. Lencina, "Effects of the induced birefringence in photorefractive crystals on speckle optical vortices," Opt. Eng. 50, 359-365 (2012).DOI
H. Sun, X. Wang, and P. Sun, "In-plane displacement measurement using optical vortex phase shifting,"Appl. Opt. 21, 5610-5613 (2016).DOI
J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander Jr, "Experimental Verification of an Optical Vortex Coronagraph," Phys. Rev. Lett. 97, 0539011 (2006).DOI
V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, "Laser beams with screw dislocations in their wavefronts," JETP Lett. 52, 429-431 (1990).
M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phase plate," Opt. Commun. 112, 321-327 (1994).DOI
E. Rueda, D. Muñetón, J. A. Gómez, and A. Lencina, "High-quality optical vortex-beam generation byusing a multilevel vortex-producing lens," Opt. Lett. 38, 3941-3944 (2013).DOI
N. Londoño, E. Rueda, J. A. Gómez, and A. Lencina, "Generation of optical vortices by using binary vortex producing lenses," Appl. Opt. 54, 796-801 (2015).DOI
L. Janicijevic, and S. Topuzoski, "Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork shaped gratings," J. Opt. Soc. Am. A 25, 2659-2669 (2008).DOI
L. Angel-Toro, D. Sierra-Sosa, M. Tebaldi, and N. Bolognini, "In-plane displacement measurement in vortex metrology by synthetic network correlation fringes," J. Opt. Soc. Am. A 30, 462-469 (2013)DOI
A. Dudley, N. Majola, N. Chetty, and A. Forbes, "Implementing digital holograms to create and measure complex-plane optical fields," Am. J. Phys. 84, 106-112 (2016).DOI
G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, "Optical vortices with starlight,"Astron. Astrophys. 488, 1159-1165 (2008).DOI