Bio-speckle for microalgae growth monitoring in laboratory scale photobioreactor

G. G. Romero, A. C. Monaldi, D. O. Dominguez, A. V. Blanc, L. Moraña


Download Paper

Base Information

Volume

V50 - N2 / 2017 Ordinario

Reference

127-133

DOI

http://doi.org/10.7149/OPA.50.2.49033

Language

English

Keywords

Biospleckle, microalgae growing, speckle activity, autocorrelation function, optical density

Abstract

Microalgae are widely used in different industries - pharmaceutical, cosmetic, in those dealing with pollution prevention, aquaculture and especially biofuels. Because of the wide range of use, there is anactive interest in microalgae large-scale cultivation. Standard techniques for algae biomass production requires cultivation in nutritious culture media, and well-defined external parameters, such as controlled conditions of light intensity, temperature and aeration gas. Commercial production of microalgae is expensive, and the addition of nutrients in culture media contributes to its high cost. The evaluation of the quality of culture media using waste water effluents or agro-industrial waste can be a way to reduce algal cultures costs. This research aims to develop a noninvasive method for the testing of effectiveness of agro-industrial waste, previously treated, as culture media through daily monitoring of population increase microalgae. We found that it is possible to detect the growth of the microorganisms by using statistical cumulants as numerical approaches for analyzing the dynamic speckle patterns produced by samples of Chrorella Vulgaris algae cultivated in bold basal culture medium.

References

0

H. Rabal, M. Trivi, R. Arizaga, N. Cap, G.Romero, E. Alanís, "Transient phenomena analysis using dynamics speckle patterns," Opt. Eng. 38(1), 57-62 (1996).DOI

1

G. Romero, E. Alanís, H. Rabal, "Statistics of the dynamics speckle produced by rotating diffuser and itsapplication to the assessment of paint drying," Opt. Eng. 39(6), 1652-1658 (2000).DOI

2

I. Yamaguchi, M. Yokota, T. Ida, M. Sunaga, K. Kobayashi, "Monitoring of Paint Drying Process by DigitalSpeckle Correlation," Op. Rew. 14 (6) 362-364 (2007).DOI

3

Y. Aizu, T. Asakura, "Bio-speckle phenomena and their application to the evaluation of blodd flow," Opt.Laser Technol. 23, 205-219 (1991).DOI

4

A. Oulomara, G. Tribillon, J. Douvernoy, "Biological activity measurements on botanical specimen surfaces using a temporal decorrelation effect of laser speckle," J. Mod Opt. 36, 165-179 (1985).DOI

5

A. Kurenda, A. Adamiak, A. Zdunek, "Temperature effect on apple biospeckle activity evaluated withdifferent indices," Postharvest Biol. Technol. 67, 118-123 (2012).DOI

6

B. Ruth, "Blood Flow determination by the laser speckle method," Int. J. Microcirc. Clin. Exo. 9, 21-5(1990).

7

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, M. Trivi,"Bio-speckle assessment of bruising in fruits," Opt. Las. Eng. 40, 13-24, (2003).DOI

8

G. F. Rabelo, A. Machado Enes, R. A. Braga Jr, I. M. Dal Fabbro, "Frequency response of biospeckle laser images of bean seeds contaminated by fungi," Biosystems Engineering 110(3), 297-301(2011).DOI

9

G. G. Romero, C. C. Martinez, E. E. Alanís, G. A Salazar, G. V. Broglia, L. Alvarez, "Bio-speckle activity applied to the assessment of tomato fruit ripening," Biosystems Engineering, 103, 116-119 (2009)DOI

10

H. J. Rabal, R. A. Braga Jr eds, Dynamic Laser Speckle and Applications. CRS Press, J. Taylor and Francis Publisher. (Boca Ratón, FL, USA) (2009).

11

M. A. Borowitzka, "Commercial production of microalgae: ponds, tanks, tube sand fermenters," J.Biotech. 70, 313–321(1999).DOI

12

P. Vishwanath, T. Kallqvist, E. Olsen, G. Vogt, H. R. Gislerød, "Fatty acid composition of 12 microalgaefor possible use in aquaculture feed," Aquacult Int 15, 1–9 (2007).DOI

13

V. Makarevi?ien?, V. Andrulevi?i?t?, V. Skorupskait?, J. Kasperovi?ien?, "Cultivation of MicroalgaeChlorella sp. and Scenedesmus sp. as a Potentional Biofuel Feedstock," Env. Res. Eng. and Management,3(57), 21 – 27 (2011).

14

N. Munir, A. Imtiaz, N. Sharif, S. Naz, "Optimization of growth conditions of different algal strains anddetermination of their lipid contents," J. An. & Plant Sc., 25(2), 546-553 (2015).

15

A. M. Sharma, P. K. Sahoo, S. Singhal, A. Patel, "Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp.," 3 Biotech 6, 116 (2016).DOI

16

A. E. Marchello, A. T. Lombardi, M. J. Dellamano-Oliveira, C. W. O. De Souza, "Microalgae population dynamics in photobioreactors with secondary sewage effluent as culture medium," Braz J Microbiol.46(1), 75–84 (2015).

17

B.O. Arredondo Vega, B. Cordero Esquivel, C. Herrero, J. Abalde, Manual de Técnicas Bioquímicas Aplicadas en Ficología. CISESE, Universidad de la Coruña, España (1997).

18

B.O. Arredondo Vega, D. Voltolina, eds, Métodos y herramientas analíticas en la evaluación de biomasa microalgal. CIBNOR. (2007).

19

H. W. Bischoff, H. C. Bold. Phycological Studies. IV. Some Algae from Enchanted Rock and Related Algae Species. University of Texas Publications (1963).

20

R. A. Braga Jr., B. O. Silva, G. Rabelo, R. M. Costa, R. M. Enesa, N. Cap, H. J. Rabal, R. Arizaga, M. Trivi, G.Horgand, "Reliability of biospeckle image analysis," Opt. Laser Eng. 45, 390-395 (2007).DOI

21

R. Kruger, W. Thompson, A. F. Turner, "Computer diagnosis of pneumoconiosis," IEEE Transc, Sys., ManCybern 4, 40-50 (1974).DOI

22

G. Rabelo, R. Braga Jr, I. Fabbro, M. Trivi, H. Rabal, R. Arizaga, "Laser speckle techniques in quality evaluation of orange fruits," Revista Brasileira de Engenharia Agrícola e Ambiental 9(4), 570-575(2005).DOI