Optical Beam Characterisation via Phase-Space Tomography

A. Cámara


Download Paper

Base Information

Volume

V49 - N4 / 2016 Ordinario

Reference

179-188

DOI

http://dx.doi.org/10.7149/OPA.49.4.49502

Language

Spanish

Keywords

Phase-space tomography, beam characterization, coherence retrieval

Abstract

This work presents four methods based on phase-space tomography for the characterization of the spatial structure of optical beams - the results of my PhD thesis. Each technique is optimal for characterizing beams with a particular symmetry. All methods are experimentally exercised to prove their feasibility in real world applications.

References

0

J. A. Rodrigo, T. Alieva, "Illumination coherence engineering and quantitative phase imaging," Opt. Lett. 19, 5634-5637 (2014). DOI

1

F. Dubois, L. Joannes, J.-C. Legros, "Improved three-dimensional imaging with a digital holography miscroscope with a source of partially spatial coherence," Appl. Opt. 38, 7085-7094 (1999). DOI

2

J. C. Ricklin, F. M. Davidson, "Atmospheric optical communication with a Gaussian Schell beam," J. Opt. Soc. Am. A, 20, 856-866 (2003). DOI

3

M. Santarsiero, R. Borghi, "Measuring spatial coherence by using a reversed-wavefront Young interferometer," Opt. Lett. 31, 861-863 (2006). DOI

4

A. I. González, Y. Mejía, "Nonredundant array of apertures to measure the spatial coherence in two dimensions with only one interferogram," J. Opt. Soc. Am. A 28, 1107-1113 (2011). DOI

5

D. Mendlovic, G. Shabtay, A. W. Lohman, N. Konforti, "Display of spatial coherence," Opt. Lett. 23, 1084-1086 (1996). DOI

6

D. Dragoman, "Can the Wigner transform of a two-dimensional rotationally symmetric beam be fully recovered from the Wigner transform of its one-dimensional approximation?," Opt. Lett 25, 281-283 (2000). DOI

7

L. Waller, G. Situ, J. W. Fleischer, "Phase-space measurement and coherence synthesis of optical beams," Nature Photon. 6, 474-479 (2012). DOI

8

L. Tian, J. Lee, S. B. Oh, G. Barbastathis, "Experimental compressive phase space tomography," Opt. Express 20, 8296-8308 (2012). DOI

9

M. G. Raymer, M. Beck, D. F. McAlister, "Complex wave-field reconstruction using phase-space tomography," Phys. Rev. Lett. 72, 1137-1140 (1994). DOI

10

A. Cámara. Optical beam characterisation via phase-space tomography, Tesis Doctoral, Univ. Complutense de Madrid. Dir. M. L. Calvo y T. Alieva, Septiembre (2014). http://eprints.ucm.es/27244/1/T35439.pdf

11

A. Cámara, Optical Beam Characterization via Phase-Space Tomography. Springer (2015). DOI

12

T. Ditmire, E. T. Gumbrell, R. A. Smith, J.W. G. Tisch, D. D. Meyerhofer, M. H. R. Hutchinson, "Spatial coherence measurement of soft X-Ray radiation produced by high order harmonic generation," Phys. Rev. Lett. 77, 4756-4759 (1996). DOI

13

A. Cámara, T. Alieva, J. A. Rodrigo, M. L. Calvo, "Phase-space tomography with a programmable Radon-Wigner display," Opt. Lett. 36, 2441-2443 (2011). DOI

14

A. Cámara, T. Alieva, J. A. Rodrigo, M. L. Calvo, "Phase space tomography reconstruction of the Wigner distribution for optical beam separable in Cartesian coordinates," J. Opt. Soc. Am. A 26, 1301-1306 (2009). DOI

15

A. Cámara, T. Alieva, I. Castro, J. A. Rodrigo, "Phase space tomography for characterization of rotationally symmetric beams," J. Opt. 16, 015705 (2014). DOI

16

A. Cámara, J. A. Rodrigo, T. Alieva, "Optical coherenscopy based on phase-space tomography," Opt. Express 21, 13169-13183 (2013). DOI

17

J. A. Rodrigo, T. Alieva, M. L. Calvo, "Experimental implementation of the gyrator transform," J. Opt. Soc. Am. A 24, 3135-3139 (2007). DOI