Spectral Width Study in a Wavelength Detector
A. M. Alaíz-Gudín, A. P. González-Marcos
Download Paper
Base Information
Volume
V49 - N2 / 2016 Ordinario
Reference
83-92
DOI
http://dx.doi.org/10.7149/OPA.49.2.48540
Language
Spanish
Keywords
Linewidth, Wavelength Detector, Laser Diode, Bistability, Optical Sensor
Abstract
In this paper, we describe different use configurations of a wavelength detector and the main parameters of an optical bistable sensor. Mainly we analyze by simulation tools the influence of the spectral width of each signal involved in our wavelength detector, namely the LDD -Laser Diode Detector-. In particular, we study the spectral width effect of the signal to be detected. The LDD, based on the bistable behavior of semiconductor lasers, has an internal continuous wave laser that allows the calibration of the sensor. Also, the effect of the line width is analyzed for this CW laser. It is shown that, for the different types of signals, the detector achieves accuracy near to 0.001nm, working with typical manufacture parameters values of the laser diodes and with wavelengths centered in the optical communications C-band.
References
Wei Xia, Xuzong Chen, "Recent developments in fiber-based optical frequency comb and its applications", Meas. Sci. Technol., 27, No.4 (2016) DOI
Elisa Garmire, "Resonant Optical Nonlinearities in Semiconductors". IEEE J. Sel. Top. Quantum Electron, 6, 1094-110 (2000) DOI
H. Kawaguchi, "Absorptive and dispertive bistability in a Fabry-Perot laser diode amplifier", Opt. Quantum Electron., vol. 19, pp. s1–s36(1987) DOI
Hitoshi Kawaguchi. "Bistable Laser Diodes and Their Applications: State of the Art." IEEE J. Sel. Topics Quantum Electron. 3, 1254-1270 (1997) DOI
A. Takada, T. Sugie, M. Saruwatari, "High-Speed Picosend Optical Pulse-Compression from Gain-Switched 1.3-mu-m Distributed Feedback-Laser Diode (DFB-LD) Through Highly Dispersive Single-Mode Fiber", J. Lightwave Technol. 5, , 1525-1533 (1987) DOI
W. Qian, "High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror". Opt. Lett. 36, 1548-1550 (2011) DOI
J.A. Martín Pereda. "Sistemas y Redes Ópticas de Comunicaciones. Pearson España, 229-236 (2004)
A. M. Alaíz, A.P. González. "Wavelength-Shift Detection by Semiconductors Laser", II Congreso DESEi+d, 121-128, (2014)
A. Yariv, P. Yeh. Photonics: Optical Electronics in Modern Communications. 6th ed., Oxford University Press, (2007)
C.H. Henry, "Theory of the Linewidth of Semiconductor Lasers IEEE J. Quantum Electron, QE-18, 259-264. (1982)
Antonio M. Alaíz, Ana P. González. "Optical M.I.D.O. Device", IONS Valencia 2015.
D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard and W.Wiegmann, "The quantum well self-electrooptic effect device: Optoelectronic bistability and oscillation, and self linearized modulation", IEEE J. Quantum Electron., vol. QE-21, 1462-1476, (1985) DOI
A. Hurtado, A. González-Marcos, J.A. Martín-Pereda. "All-optical logic gates with 1550nm Fabry-Perot and distributed feedback semiconductor laser amplifiers". IEEE Spanish Conference on Electron Devices. (2005) DOI
A. Hurtado, A. González-Marcos, José A. Martín-Pereda. "Wavelength monitoring with semiconductor laser amplifiers. Second European Workshop on Optical Fibre Sensors". (2004)
Zhiyong Dai, Bo Wu, Zengshou Peng, Zhonghua Ou, Yongzhi Liu. "Stable Narrow Linewidth Ring Fiber Laser with a Passive Fiber Bragg Grating Fabry-Perot Etalon and a Fiber Saturable Absorber". International Conference on Optical Instruments and Technology: Microelectronic and Optoelectronic Devices and Integration. Proc. SPIE 7158, 715817 (2009) DOI
"Fujitsu, University of Tokyo Develop World's First 10Gbps Quantum Dot Laser Featuring Breakthrough Temperature-Independent Output", http://www.fujitsu.com/global/about/resources/news/press-releases/2004/0910-01.html
Marek Osinski, "Linewidth Broadening Factor in Semiconductor Lasers" – An Overview. IEEE Journal of Quantum Electronics, Vols. QE-23, 9-29. (1987)