Dual system increases the resolution of a low coherence interferometer system through a signal detector astigmatic focus

A. E. N. Morel, A. D. Aguilar, J. R. Torga


Download Paper

Base Information

Volume

V48 - N4 / 2015 Ordinario

Reference

301-308

DOI

http://dx.doi.org/10.7149/OPA.48.4.301

Language

Spanish

Keywords

OCT, low coherence interferometry, focus signal, displacement measurement and tomography

Abstract

The low coherence interferometry in Fourier space (FD-OCT) is a technique to measure distance with typical values of dynamic range in the order of 3 mm and resolution below 10 microns. In this paper we propose to combine the interferometric technique with a technique that measures distances using astigmatic focus signal, allowing lead the resolution limit of less than 10 nm. The experimental scheme shown armed with both techniques and experimental results in displacement of a sample surface, controlled feedback system with a piezoelectric strain gauge which we have used as a reference system.

References

0

I. Grulkowski, J.J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J.G. Fujimoto, A.E. Cable "High-precision, high- accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source," Opt. Lett, 38, 5, 674-675 (2013); DOI

1

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G.Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178-1181 (1991). DOI

2

W. Drexler, J. Fujimoto, Editors, Optical Coherence Tomography: Technology and Applications, Springer (2008). DOI

3

D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. Pircher, E. Gotzinger, B. Baumann, C. Hitzenberger, "Advanced optical coherence tomography techniques: novel and fast imaging tools for nondestructive testing," presented at The 17th World Conference on Nondestructive Testing, Shanghai, China, 25-28 October, (2008). http://www.ndt.net/article/wcndt2008/papers/456.pdf

4

C. During, S. Anderson and J. Wilkander, "Non-contact absolute measurement," Sensor Actuators A 32, 575-581 (1992). DOI

5

K. C. Fan, Y. T. Fei, X. F. Yu, Y. J. Chen, W. L. Wang, F. Chen, Y. S. Liu, "Development of a low-cost micro- CMM for 3D micro/nano measurement," Meas. Sci. Technol. 17, 524-532, (2004). DOI

6

C. Ruberti, E.N. Morel, J.R. Torga "Medición de distancias por señal de foco," Proceedings from Congreso Argentino de Ingeniería - CADI, Mar del Plata (2012).

7

E.N. Morel, J.R. Torga "Limitaciones debido al detector en la interferometría de baja coherencia," Opt. Pura Apl. 41, 69-74 (2008)

8

E. N. Morel, J. R. Torga "Simple method for thickness measurement in opaque samples with a Michelson-Sagnac interferometer," RIAO/OPTILAS: 6th Ibero-American Conference on Optics (RIAO); 9th Latin-American Meeting on Optics, Lasers and Applications (OPTILAS) Campinas, Sao Paulo, Brazil, AIP Conference Proceedings 992, pp. 793-797 (2007).

9

E.N. Morel, M.V. Gutierrez, H.M. Miranda, E.L. Sambrano, J.R. Torga "Optical coherence tomography- based scanning system for shape determination, wall thickness mapping, and inner inspection of glass containers," Appl. Opt. 52, 1793-1798 (2013). DOI