Cloud camera design using a Raspberry Pi

J. C. Antuña-Sánchez, N. Díaz, R. Estevan, A. M. de Frutos, J. C. Antuña-Marrero


Download Paper

Base Information

Volume

V48 - N3 / 2015 Ordinario

Reference

199-205

DOI

http://dx.doi.org/10.7149/OPA.48.3.199

Language

Spanish / Español

Keywords

all-sky camera, raspberry pi, cloud camera

Abstract

The design and assembly of low cost all-sky camera for clouds detection is presented. The instrument comply with all the requirements currently established for this type of instrument. Under the conditions of Cuba, it is impossible to acquire such a device, which costs between $600 and $3500 USD. Using a Raspberry Pi, its camera module with a CMOS sensor and a unipolar stepper motor (recovered from a discontinued matrix printer) we have built a sky camera for less than $300 USD. The Raspberry Pi, using free software and hardware, will control and conduct the operation of the camera, the image capturing, the processing and the transmission of the latter results. Among the advantages provided for this device stand objectively determining the percentages of sky covered by clouds, the ability to archive images taken for potential future reprocessing, the classifications of clouds according to the attenuation of solar radiation they produce, among others. All this advantages will be achieved with an instrument of very low cost, allowing access to this technology for both research networks and meteorological services in poor countries.

References

0

OMM, Reglamento Técnico. Volumen 1: Normas meteorológicas de carácter general y prácticas recomendadas. Edición 2011, Actualizada 2012. Reporte OMM-49. ISBN 92-63-39049-5, 55 pp (2012).

1

WMO, Guide to meteorological instruments and methods of observations. WMO No.8, 567 pp (2006).

2

Fassig, O., A revolving cloud camera. Mon. Wea. Rev., 43 (6), 274-275 pp (1915).

3

Anthes, R., A. Robock, J. C. Antuña-Marrero, O. García, J. J. Braun, and R. Estevan Arredondo, 2015: Cooperation on GPS Meteorology between the United States and Cuba. Bull. Amer. Meteor. Soc., 96, 1079-1088 (2015) DOI

4

Estevan,R., L. Mona, N. Papagiannopoulos, J. C. Antuña, V. Cachorro and A. de Frutos, 2014, CALIPSO and sunphotometer measurements of Saharan Dust events over Camagüey. Opt. Pura Apl. 47 (3), pp. 189-196 (2014) DOI

5

Antuña, J. C., R. Estevan, B. Barja, 2012: Demonstrating the Potential for First-Class Research in Underdeveloped Countries: Research on Stratospheric Aerosols and Cirrus Clouds Optical Properties, and Radiative Effects in Cuba (1988-2010). Bull. Amer. Meteor. Soc., 93, 1017-1027. DOI

6

Raspberry, Raspberry Pi Foundation, http//:www.raspberrypi.org (2015).

7

F.M. Wanlass and C.T. Sah: "Nanowatt Logic Using Field-Effect Metal. Oxide Semiconductor Triodes", Solid-State Circuits Conference. Digest of Technical Papers. 1963 IEEE International, 32 - 33 (1963). DOI

8

Hain, R., C. J. Kahler, C. Tropea, 2007: Comparison of CCD, CMOS and intensified cameras, Experiments in Fluids, Vol. 42, Issue 3, pp 403-411. DOI

9

Uhl, A., 2015: Image Processing and Computer Vision. Course notes WS 2013/2014, 136 pp. http://www.cosy.sbg.ac.at/~uhl/IPCV.pdf

10

Hill, R., A lens for whole sky photographs. Quarterly Journal of the Royal Meteorological Society 50:227-235 pp (1924).

11

A. Cazorla, F. J. Olmo, and L. Alados-Arboledas, "Development of a sky imager for cloud cover assessment," J. Opt. Soc. Am. A 25, 29-39 (2008). DOI

12

I. Reda and A. Andreas, "Solar Position Algorithm for Solar Radiation Applications," National Renewable Energy Laboratory, NREL/TP-560-34302.