High precision two photon spectroscopy in hydrogen isotopes for the measurement of the electric field in plasmas generated in hollow cathode discharges
V. González-Fernández
Download Paper
Base Information
Volume
V53 - N4 / 2020 Ordinario
Reference
51050: 1-11
DOI
http://dx.doi.org/10.7149/OPA.53.4.51050
Language
English
Keywords
Spectroscopy, laser, plasma, hydrogen
Abstract
In this thesis, the intensity of the local electric field in the cathode region of a hollow cathode discharge operated in hydrogen was measured, in a wide range of pressures and currents to study the influence of the diameter (10 and 15 mm) and material of the cathode used (stainless steel and tungsten). The method is based on the Stark effect of the level n=2, via the absorption of two 243 nm photons, circularly polarized in opposite directions, to eliminate the Doppler effect. When the atom is in the 2S state, it photo-ionizes, modifying the impedance of the plasma, which can be detected as the voltage drop on a resistor (optogalvanic spectroscopy). The local electric field is determined by comparing the separation of the Stark components with the theoretical values.
References
H. R. Griem, Principles of Plasma Spectroscopy. Cambridge University Press, (2005)
K. Muraoka and M. Maeda. Laser-Aided Diagnostics of Plasmas and Gases. IoP Publishing, Bristol,(2001)
R. W. Boyd, Nonlinear Optics. Academic Press (2003)
V. Gonzalez-Fernandez. Espectroscopia de dos fotones de alta precisión en isótopos de hidrógeno para la medida del campo eléctrico en plasmas generados en descargas de cátodo hueco. Tesis Doctoral. Universidad de Valladolid (2018)
W. Lochte-Holtegreven, Plasma-Diagnostics. Ed. North-Holland, Amsterdam (1968)
V. P. Gavrilenko, H. J. Kim, T. Ikutake, J. B. Kim, Y. W. Choi, M. D. Bowden, K. Muraoka. "Measurement method for electric fields based on Stark spectroscopy of argon atoms". Phys. Rev. E, 62, 7201. (2000)
D. Spasojević, V. Steflekova, N. M. Šišović, N. Konjević. "Electric field distribution in the cathode-fall region of an abnormal glow discharge in hydrogen: experiment and theory". Plasma Sources Sci. Technol., 21 025006 (2012).
G. S. He, S. H. Liu, Physics of Nonlinear Optics. World Scientific (1999)
K. Liu, M. G. Littman, "Novel geometry for single-mode scanning of tunable lasers", Opt. Lett., 6, 117-118 (1981)
B. Barbieri, N. Beverini, A. Sasso, "Optogalvanic spectroscopy", Rev. Mod. Phys., 62, 603 (1990)
C. Pérez, M. I. de la Rosa, K. Grützmacher. "Hollow cathode fall field strength measured by Doppler-free two-photon optogalvanic spectroscopy via Stark splitting of the 2S level of hydrogen", Eur. Phys. J. D, 56, 369-375 (2010)
M. Garcia-Lechuga, L. M. Fuentes, K. Grützmacher, C. Pérez, and M. I. de la Rosa, "Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis", J. Appl. Phys., 116, 133103 (2014)
V. Gonzalez-Fernandez, K. Grützmacher, C. Pérez and M. I. de la Rosa, "Experimental study of the electric field in a hollow cathode discharge in hydrogen: influence of sputtering" J. Instrum., 12, C11029 (2017)
V. Gonzalez-Fernandez, K. Grützmacher, A. Steiger, C. Pérez and M. I. de la Rosa, "Measured cathode fall characteristics depending on the diameter of a hydrogen hollow cathode discharge" Plasma Sources Sci. Technol., 26, 105004 (2017)
V. Gonzalez-Fernandez, K. Grützmacher, C. Pérez and M. I. de la Rosa, "Influence of the cathode material in the cathode fall characteristics of a hydrogen hollow cathode glow-discharge" J. Appl. Phys., 124, 033302 (2018)