Single molecular-excitation propagation in one-dimensional optical lattices

V.C. Olaya-Agudelo, K. Rodríguez-Ramírez


Download Paper

Base Information

Volume

V52 - N2 / 2019 Ordinario

Reference

50310:1-8

DOI

http://doi.org/10.7149/OPA.52.2.50310

Language

English

Keywords

Atomic and molecular physics, coherent optical effects, ultracold collisions, electric dipole moments, polar molecules.

Abstract

We study a LiCs strongly-interacting molecular gas loaded on an one-dimensional optical lattice keeping one particle per site. The molecules are in the lowest electronic and vibrational (?=0) state, ?1?. Here, coherent transfers of rotational excitations (N={0,1}) along the lattice are shown for several lattice sizes and initial conditions. Due to the large intermolecular distance and low filling, the dipole-dipole interaction in the nearest-neighbor approximation governs the dynamics of the rotational excitations. For low field strengths, the full set of internal rotational projections must be taken into account. The generated von Neumann entanglement entropy throughout the dynamics of the energy transfer are also presented. A monotonic growth for short times and a saturation towards the steady regime is observed, showing the potential of these molecular systems to be used in quantum information protocols. The numerical simulations are performed by means of the Time-Evolving Block Decimation algorithm based on the Matrix Product State formalism and the Susuki-Trotter decomposition.

References

0

J. J. Hudson, B. E. Sauer, M. R. Tarbutt, E. A. Hinds, "Measurement of the electron electric dipole moment using YbF molecules," Phys. Rev. Lett., 89, 023003 (2002).

1

T. Zelevinsky, S. Kotochigova, J. Ye, "Precision test of mass-ratio variations with lattice confined ultracold molecules," Phys. Rev. Lett. 100, 043201, (2008).

2

D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, E. Tiesinga, "Enhanced sensitivity to variation of me /mp in molecular spectra," Phys. Rev. Lett. 100, 043202, (2008).

3

R. V. Krems, "Molecules near absolute zero and external field control of atomic and molecular dynamics," Int. Rev. Phys. Chem. 24, 99–118 (2005).

4

N. Balakrishnan, "Perspective: Ultracold molecules and the dawn of cold controlled chemistry," J. Chem. Phys 145, 15090 (2016).

5

D. DeMille, "Quantum computation with trapped polar molecules," Phys. Rev. Lett. 88, 067901 (2002).

6

P. Rabl, P. Zoller, "Molecular dipolar crystals as high-fidelity quantum memory for hybrid quantum computing," Phys. Rev. A 76, 042308 (2007).

7

K. Rodriguez, S. R. Manmana, M. Rigol, R. M. Noack, A. Muramatsu, "Coherent matter waves emerging from mott-insulators," New J. Phys. 8, 169 (2006).

8

K. Rodríguez, A. Argüelles, M. Colomé-Tatché, T. Vekua, L. Santos, "Mott-insulator phases of spin-3/2 fermions in the presence of quadratic Zeeman coupling," Phys. Rev. Lett. 105, 050402 (2010).

9

K. Rodríguez, A. Argüelles, A. K. Kolezhuk, L. Santos, T. Vekua, "Field-induced phase transitions of repulsive spin-1 bosons in optical lattices," Phys. Rev. Lett. 106, 105302 (2011).

10

A. M. Kaufman, B. J. Lester, C. A. Regal, "Cooling a single atom in an optical tweezer to its quantum ground state," Phys. Rev. X 2, 041014 (2012).

11

J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletíc, M. D. Lukin, "Coherence and Raman sideband cooling of a single atom in an optical tweezer," Phys. Rev. Lett. 110, 133001 (2013).

12

A. Do ̧Caj, M. L. Wall, R. Mukherjee, K. R. A. Hazzard, "Ultracold nonreactive molecules in an optical lattice: Connecting chemistry to many-body physics," Phys. Rev. Lett. 116, 135301 (2016).

13

D. Jin, J. Ye, "Polar molecules in the quantum regime," Phys. Today 64, 27 (2011).

14

M. Lemeshko, R. V. Krems, J. M. Doyle, S. Kais, "Manipulation of molecules with electromagnetic fields," Mol. Phys. 111, 1648–1682 (2013).

15

T. Köhler, K. Goral, P. S. Julienne, "Production of cold molecules via magnetically tunable feshbach resonances," Rev. Mod. Phys. 78, 1311–1361 (2006).

16

Y. V. Suleimanov, R. V. Krems, "Efficient numerical method for locating Feshbach resonances of ultracold molecules in external fields," J. Chem. Phys. 134, 014101 (2011).

17

K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne, "Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering," Rev. Mod. Phys. 78, 483–535 (2006).

18

A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, "Production of ultracold, polar RbCs molecules via photoassociation," Phys. Rev. Lett. 92, p. 033004, Jan 2004.

19

J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, "Optical production of ultracold polar molecules," Phys. Rev. Lett. 94, 203001 (2005).

20

B. E. Londono, J. Mahecha, E. Luc-Koenig, A. Crubellier, "Lifetime of vibrational levels from Fourier grid calculations: RbCs example," Phys. Chem. Chem. Phys. 13, 18738–18754 (2011).

21

F. Lang, K. Winkler, C. Strauss, R. Grimm, J. H. Denschlag, "Ultracold triplet molecules in the rovibrational ground state," Phys. Rev. Lett. 101, 33005 (2008).

22

K. Bergmann, H. Theuer, B. W. Shore, "Coherent population transfer among quantum states of atoms and molecules," Rev. Mod. Phys. 70, 1003–1025, (1998).

23

P. K. Molony, P. D. Gregory, A. Kumar, C. R. LeSueur, J. M. Hutson, S. L. Cornish, "Production of ultracold 87Rb133Cs in the absolute ground state: Complete characterisation of the stimulated Raman adiabatic passage transfer," Chem. Phys. Chem 17, 3811–3817 (2016).

24

S. A. Moses, J. P. Covey, M. T. Miecnikowski, D. S. Jin, J. Ye, "New frontiers for quantum gases of polar molecules," Nat. Phys. 13, 13–20 (2017).

25

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, M. Weidemüller, "Formation of ultracold polar molecules in the rovibrational ground state," Phys. Rev. Lett. 101, 33004 (2008).

26

F. Herrera, M. Litinskaya, R. V. Krems, "Tunable disorder in a crystal of cold polar molecules," Phys. Rev. A 82, 033428 (2010).

27

V. Agranovich, Excitations in Organic Solids. Oxford University Press (2008).

28

L. D. Carr, D. DeMille, R. V. Krems, J. Ye, "Cold and ultracold molecules: science, technology and applications," New J. Phys. 11, 055049 (2009).

29

R. Krems, B. Friedrich, W. Stwalley, Cold Molecules: Theory, Experiments, Applications. Taylor and Francis (2009).

30

V. R. N. Zare, Angular Momentum: Understanding Spatial Aspects in chemistry and Physics. Wiley-VCH Verlag GmbH & Co. KGaA (1988).

31

E. Schmidt, (German) "Zur theorie der linearen und nichtlinearen integralgleichungen. i. teil: Entwicklung willkrlicher funktionen nach systemen vorgeschriebener," Mathematische Annalen 63, 433–476 (1907).

32

G. Vidal, "Efficient classical simulation of slightly entangled quantum computations," Phys. Rev. Lett. 91, 147902 (2003).

33

G. Vidal, "Efficient simulation of one-dimensional quantum many-body systems," Phys. Rev. Lett. 93, 040502 (2004).

34

F. Verstraete, J. J. Garcia-Ripoll, J. I. Cirac, "Matrix product density operators: Simulation of finite-temperature and dissipative systems," Phys. Rev. Lett. 93, 207204 (2004).

35

F. Verstraete, D. Porras, J. I. Cirac, "Density matrix renormalization group and periodic boundary conditions: A quantum information perspective," Phys. Rev. Lett. 93, 227205 (2004).

36

M. Suzuki, "Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations," Phys. Lett. A 146, 319– 323 (1990).

37

M. Aymar, O. Dulieu, "Calculation of accurate permanent dipole moments of the lowest σ+1,3 states of heteronuclear alkali dimers using extended basis sets," J. Chem. Phys. 122, 204302 (2005).