Bogoliubov-De Gennes Formalism for Tracking Free Majoranas on Ultra Cold Fermi Gases

A. A. Pérez Losada, K. Rodríguez Ramírez, A. Argüelles,


Download Paper

Base Information

Volume

V51 - N3 / 2018 Ordinario

Reference

50313:1-9

DOI

http://doi.org/10.7149/OPA.51.3.50313

Language

Spanish

Keywords

Majorana fermions, dispersion relation, Bogoliubov-de Gennes Hamiltonian.

Abstract

The collective excitations of a system, particularly at low temperatures, behave as quasi-particles with properties that may differ from their constituents. In particular, there are exotic excitations called Majorana fermions or zero-energy modes modes, which have the special characteristic of being their own antiparticle. In that sense, this work seeks tracing these excitations in an artificial arrangement of a nanowire simulated through a one-dimensional chain. In that direction, the Fourier transform is used with the purpose of bringing the Hamiltonian from position to momentum space. Subsequently, it is proposed to diagonalize the system using the Bogoliubov-de Gennes formalism. In this way, we obtain the phase diagram displaying the set of parameters for which zero energy modes are stabilized.

References

0

R.P. Feynman, "Simulating physics with computers", Int.J.Theor.Phys, 21 p.467 (1982).

1

Michael H. Freedman, et al., "Topological quantum computation": Bull. Amer. Math. Soc. 40, p. 31-38 (2003).

2

Keisuke Fujii, "Quantum Computation with Topological Codes: From Qubit to Topological Fault-Tolerance", Springer, ISBN 978-981-287-996-7, (2015).

3

Bloch Immanuel, et al., "Many-body physics with ultracold gases", Rev. Mod. Phys. 80 p. 885-964 (2008).

4

Bloch Immanuel, et al., "Quantum simulations with ultracold quantum gases". Nat Phys 8 p. 1745-2473 (2012).

5

Adams C.S., et al., "Laser cooling and trapping of neutral atoms", Progress in Quantum Electronics 21 , p. 1 - 79 (1997).

6

Katori Hidetoshi, et al., "Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature", Phys. Rev. Lett. 82 p. 1116-1119 (1999).

7

Brown Benjamin L., et al., "Coherent Control of Ultracold Molecule Dynamics in a Magneto-Optical Trap by Use of Chirped Femtosecond Laser Pulses", Phys. Rev. Lett. 96 p. 173002 (2006).

8

Kitaev A Y, "Unpaired Majorana fermions in quantum wires", Physics Uspekhi, 44 (2001).

9

Rainis Diego, et al., "Majorana qubit decoherence by quasiparticle poisoning", Phys. Rev. B 85 p. 174533 (2012).

10

Wilczek F., "Majorana returns", Nature Physics 5, 614-518 (2009).

11

Gennes, P. G. D, "Superconductivity of Metals and Alloys", Advanced Book Program, Perseus Books, (1999).

12

Kim Yong-Jihn, "Pairing in the Bogoliubov-de Gennes Equations", International Journal of Modern Physics B 11 p. 06 (1997).

14

Stoudenmire E. M, et al., "Interaction effects in topological superconducting wires supporting Majorana fermions". En: Phys. Rev. B 84 p. 014503 (2011).

15

Mourik V., et al., "Signatures of Majorana Fermions in Hybrid Superconductor Semiconductor Nanowire Devices", Science 336 p. 1003-1007 (2012).

16

Bardeen J, et al., "Theory of Superconductivity", Phys. Rev. 108 p. 1175-1204 (1957).

17

Iskin M., et al., "Topological superfluid phases of an atomic Fermi gas with in -and out-of-plane Zeeman fields and equal Rashba-Dresselhaus spin-orbit coupling", Phys. Rev. A 87 p. 063627(2013).

18

Ptoj A., et al., "Yu-Shiba-Rusinov states of impurities in a triangular lattice of NbSe2 with spin-orbit coupling", Phys. Rev. B 96 p. 184425(2017).