Danjon Number and RGB-colors in Total Lunar Eclipse: 2000-2017

N. Falcon, A. Ortega


Download Paper

Base Information

Volume

V51 - N3 / 2018 Ordinario

Reference

50025:1-14

DOI

http://doi.org/10.7149/OPA.51.3.50025

Language

Spanish

Keywords

Danjon number, Total Lunar eclipse, digital colors, atmospheric optical thickness.

Abstract

The apparent magnitude and chromaticity of the lunar disk during the maximum phase of a total eclipse of the Moon inform about the atmospheric optical thickness and the average column density of aerosols in the Earth's atmosphere. The estimation of the magnitude of the total lunar eclipse has been used for paleoclimatology studies and has been correlated with global volcanic activity; hence the importance of its quantification. However, the qualitative scale used to determine the magnitude and chromaticity, known as Danjon's number, is not sufficient to unambiguously characterize these magnitudes. A methodology is sought to determine a well-defined scalar, which links the Danjon number to the RGB digital color of the photographs, called the Danjon Factor (FD); and the results obtained for all the total eclipses of Luna occurred in the period 2000-2017. It is concluded that the Danjon Factor is an effective measure of the magnitude and chromaticity calculable through the digital RGB color in the Total Lunar Eclipses.

References

0

J. Kepler. Astronomiae Pars Optica. Marnius, Frankfurt. pp. 267 (1604)

1

G. Baillet, "Réfraction Atmosphérique," Observations & Travaux 80, 22-27 (2012)

2

L. Rayleigh Phyl Mag. XLI 107, 274-278 (1871)

3

R.A. Keen, "Volcanic Aerosols and Lunar Eclipses," Science 222, 1011-1013 (1983)

4

R.A. Keen, "Volcanic Aerosols optical thicknesses since 1960," Bull. Global Volcanism Network 22, 11 (1997)

5

R.A. Keen, "Volcanic Aerosols derived from Lunar eclipse observation". Bull. Global Volcanism Network 26, 5 (2001).

6

R.B. Stothers, "Stratospheric Transparency Derived from Total Lunar Eclipse Colors, 1801-1881," PASP 117, 1445-1450 (2005)

7

R.B. Stothers, "Stratospheric Transparency Derived from Total Lunar Eclipse Colors, 1665-1800," PASP ,116, 886-893 (2004)

8

R.B. Stothers, "Three centuries of observation of stratospheric transparency,. Climatic Change 83, 515-521. (2007)

9

A. Danjon "Relation Entre l'Eclairement de la Lune Eclipsee et l'Activite Solaire," L'Astronomie. 35, 261-265 (1921)

10

A Danjon. Astronomie generale. J. & R. Sennac (1952)

12

N. Hernitschek et al. "Lunar eclipse photometry: absolute luminance measurements and modeling," Applied Optics 34, 62-70 (2008)

13

M. Vollmer et al. "Simulating irradiance during lunar eclipses: the spherically symmetric case," Applied Optics 34, 52-61 (2008)

14

E. Hecht ; A. Zajac. Optica. Addison Wesley Delaware (1974)

15

Computational Chemistry Comparison and Benchmark DataBase. NIST Standard Reference Database Number 101 Release 19, April 2018, Editor: Russell D. Johnson III https://cccbdb.nist.gov/diatomicexpbondx.asp

16

W. J. McNeil; E. Murad, and S. T. Lai. "Comprehensive model for the atmospheric sodium layer," J. Geophys. Res. 8, 6847-16855. (1995)

17

R. Muñoz,; N. Falcón,; A. Muñoz, R. Morales "Caracterización Física de la percepción de Colores Digitales," Ingeniería UC 2, 7-30 (1999)