An automatic wrapped phase gradient-based method for spherical aberration correction in Digital Holographic Microscopy

A. C. Monaldi, G. G. Romero, A. V. Blanc, C. M. Cabrera


Download Paper

Base Information

Volume

V51 - N3 / 2018 Ordinario

Reference

49032:1-8

DOI

http://doi.org/10.7149/OPA.51.3.49032

Language

English

Keywords

phase curvature, digital holographic microscopy, Optical phase aberration, wrapped phase.

Abstract

Most digital holographic microscopy architectures introduce a microscope objective in the object arm of the micro-interferometer in order to increase lateral resolution but, as a consequence, a spherical phase aberration arises. The phase distortion must be corrected to achieve reliable phase information linked to the microscopic object under study. In this work, we present a fast and simple numerical method for automatically compensate the phase curvature from the wrapped phase gradient of the reconstructed hologram. Since non-unwrapping methods are required, computational cost is significantly reduced. Furthermore, no additional holograms recording is needed and it does not require prior knowledge of the object or the setup. The method is experimentally demonstrated by a phase contrast imaging of a Pediastrum cell.

References

0

C. Mann, L. Yu, C.-M Lo and M. Kim, "High-resolution quantitative phase-contrast microscopy by digital holography", Opt. Express 13, 8693-8698 (2005).

1

A. Doblas. D. Hincapie-Zuluaga, G. Saavedra, M. Martínez-Corral and J. García-Sucerquia, "Physical compensation of phase curvature in digital holographic microscopy by use of programmable liquid lens", App. Opt. 54 16, 5229-5233 (2015).

2

E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms", Appl. Opt. 38, 6994 (1999).

3

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, "Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging" Appl. Opt. 42, 1938 (2003).

4

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, "Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram" Opt. Express 14, 4300 (2006).

5

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation", App. Opt. 45 (5), 851?863 (2006).

6

Tristan Colomb, Frédéric Montfort, Jonas Kühn, Nicolas Aspert, Etienne Cuche, Anca Marian, Florian Charrière, Sébastien Bourquin, Pierre Marquet, and Christian Depeursinge, "Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy", J Opt Soc Am A 23, 3177-3190 (2006).

7

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, "Phase aberration compensation of digital holographic microscopy based on least squares surface fitting" Opt. Commun. 282, 3873-3877 (2009).

8

Y. Wen, W. Qu, C. Cheng, Z. Wang, A. Anand, "Phase errors elimination in compact digital holoscope (CDH) based on a reasonable mathematical model" Pro. of SPIE 9302, 930207 (2015).

9

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, "Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram" Appl. Phys. Lett. 90, 041104 (2007).

10

C. Zuo, Q. Chen, W. Qu, and A. Asundi, "Phase aberration compensation in digital holographic microscopy based on principal component analysis, Opt. Lett. 38, 1724-1726 (2013).

11

J. Sun, Q. Chen, Y. Zhang, C. Zuo, "Optimal principal component analysis-based numerical phase aberration compensation method for digital holography" Opt- Lett 41 (6), 1293-1296 (2016).

12

H. Cui, D. Wang, Y. Wang, J. Zhao and Y. Zhang, "Phase aberration compensation by spectrum centering in digital holographic microscopy", Opt. Commun. 284, 4152-4155 (2011).

13

J. W. Goodman, Introduction to Fourier Optics, second ed., Mc Graw-Hill Companies, Inc., USA (1996).

14

A. Monaldi, G. Romero, C. Cabrera, A. Blanc, E. Alanís, "Rolling Shutter Effect Aberration Compensation in Digital Holographic Microscopy", Opt. Commun 366, 94-98 (2016).