Caracterización y optimización de las pantallas LCoS para su aplicación en óptica difractiva

A. Lizana


Descargar artículo

Información básica

Volumen

V47 - N4 / 2014 Ordinario

Referencia

293-307

DOI

http://dx.doi.org/10.7149/OPA.47.4.293

Idioma

Spanish / Español

Etiquetas

LCD, LCoS, Despolarización, Optimización Fase, óptica Difractiva, Fluctuaciones de Fase.

Resumen

Este manuscrito presenta un artículo de revisión en el contexto de la calibración, optimización y aplicación de las pantallas de cristal líquido sobre silicio (LCoS). En particular, se presenta un estudio exhaustivo de las pantallas LCoS, para su utilización óptima en aplicaciones dentro de la óptica difractiva. Se propone un nuevo método de caracterización y optimización de las pantallas LCoS, el cual se basa en una combinación de los formalismos matemáticos de Mueller y Jones, que permite optimizar la respuesta en intensidad y fase de estos dispositivos, incluso en presencia de cierta cantidad de luz despolarizada. También se presentan evidencias experimentales de un importante fenómeno físico que aparece al trabajar con las pantallas LCoS: las fluctuaciones temporales de la fase. Para una mayor comprensión de este fenómeno, se presenta igualmente una discusión sobre la influencia de las fluctuaciones de la fase en la eficiencia de elementos ópticos difractivos generados con las pantallas LCoS. Finalmente, también se propone un método de codificación de la fase para la implementación de elementos ópticos difractivos que permite minimizar el efecto desfavorable de las fluctuaciones de fase en la generación de hologramas digitales.

Referencias

0

H. K. Liu, J. A. Davis, R. A. Lilly, "Optical-data-processing properties of a liquid crystal television spatial light modulator", Opt. Lett. 10, 635-637 (1985).DOI

1

H. J. Coufal, D. Psaltis, B. T. Sincerbox, Holographic Data Storage. Springer-Verlag, Berlin (2000).DOI

2

K. M. Twietmeyer, R. A.Chipman, A. E. Elsner, Y. Zhao, D. VanNasdale, "Mueller matrix retinal imager with optimized polarization conditions", Opt. Express 16, 21339-21354 (2008).DOI

3

A. Márquez, C. Iemmi, J. Campos, J. C. Escalera, M. J. Yzuel, "Programmable apodizer to compensate chromatic aberration effects using a liquid crystal light modulator", Opt. Express 13, 716-730 (2005).DOI

4

A. Hussain, J. L. Martínez, A. Lizana, J. Campos, "Super resolution imaging achieved by using on-axis interferometry based on a spatial light modulator", Opt. Express 21, 9615-9623 (2013).DOI

5

A. Hussain, J. L. Martínez, J. Campos, "Holographic superresolution using spatial light modulator", J. Eur. Opt. Soc. Rap. Public. 8, 13007 (2013).DOI

6

S. Zwick, T. Haist, M. Warber, W. Osten, "Dynamic holography using pixelated light modulators", Appl. Opt. 49, F47-F58 (2010).DOI

7

X. Wang, W. Liu, E. Chuang, D. Psaltis, "Liquid crystal on silicon (LCOS) beam steerer for holographic data storage", Lasers and Electro-Optics 19, 407-408 (1998).

8

Q. Mu, Z. Cao, L. Hu, D. Li, L. Xuan, "An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device", Opt. Express 14, 8013-8018 (2006).DOI

9

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, Y. Kobayashi, "LCoS spatial light modulator controlled by 12-bit signals for optical phase-only modulation", Proc. SPIE 6487, 64870Y (2007).DOI

10

K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, D. VanNasdale, "Mueller matrix retinal imager with optimized polarization conditions", Opt. Express 16, 21339-21354 (2008).DOI

11

J. Galeotti, A. Sajjad, B. Wang, L. Kagemann, G. Shukla, M. Siegel, B. Wu, R. Klatzky, G. Wollstein, J.S. Schuman, G. Stetten, "The OCT penlight: In-situ image guidance for microsurgery", Proc. SPIE 7625, 762502 (2010).DOI

12

A. Hermerschmidt, S. Osten, S. Krüger, T. Blümel, "Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution", Proc. SPIE 6584, 65840E (2007).DOI

13

A. Lizana, I. Moreno, A. Márquez, C. Iemmi, E. Fernández, J. Campos, M. J. Yzuel, "Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics", Opt. Express 16, 16711-16722 (2008).DOI

14

U. Ruíz, C. Provenzano, P. Pagliusi, G. Cipparrone, "Pure two-dimensional polarization patterns for holographic recording", Opt. Lett. 37, 311-313 (2012).DOI

15

K. P. Proll, J. M. Nivet, K. Körner, H. J. Tiziani, "Microscopic three dimensional topometry with ferroelectric liquid-crystal-on-silicon displays", Appl. Opt. 42, 1773-1778 (2003).DOI

16

J. Kacperski, M. Kujawinska, "Active LCoS based laser interferometer for microelements studies", Opt. Express 14, 9664-9678 (2006).DOI

17

R. M. A. Azzam, N. D. N. Bashara, "Ellipsometric measurement of the polarization transfer function of an optical system", J. Opt. Soc. Am. 62, 336-340 (1972).DOI

18

R. J. Gagnon, "Liquid-crystal twist-cell optics", J. Opt. Soc. Am. 71, 348-353 (1981).DOI

19

K. Lu, B. E. A. Saleh, "Reducing Berreman's 4x4 formulation of liquid-crystal-display optics to 2x2 Jones vector equations", Opt. Lett. 17, 1557-1559 (1992).DOI

20

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, "Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model", Opt. Eng. 40, 2558-2564 (2001).DOI

21

R. C. Jones, "A new calculus for the treatment of optical systems", J. Opt. Soc. Am. 31, 488-493 (1941).DOI

22

D. W. Berreman, "Optics in stratified and anisotropic media: 4x4-matrix formulation", J. Opt. Soc. Am. 62, 502-510 (1972).DOI

23

J. E. Wolfe, R. A. Chipman, "Polarimetric characterization of liquid-crystal-on-silicon panels", Appl.Opt. 45, 1688-1703 (2006).DOI

24

A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, M. J. Yzuel, "Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization", Opt. Express 16, 1669-1685 (2008).DOI

25

I. Moreno, A. Lizana, J. Campos, A. Márquez, C. Iemmi, M. J. Yzuel, "Combined Mueller and Jones matrix method for the evaluation of the complex modulation in a liquid-crystal-on-silicon display", Opt. Lett. 33, 627-629 (2008).DOI

26

N. G. Parke, "Optical algebra", J. Math. Phys. 28, 131-139 (1949).

27

R. A. Chipman, "Polarimetry", in Handbook of Optics, McGraw-Hill, New York (1995).

28

D. Goldstein, Polarized Light, Mercel Dekker, New York (2003).

29

A. Peinado, A. Lizana, J. Vidal, C. Iemmi, J. Campos, "Optimization and performance criteria of a Stokes polarimeter based on two variable retarders", Opt. Express 18, 9815-9830 (2010).DOI

30

P. Taylor, Theory and Applications of Numerical Analysis, Academic Press, London (1974).

31

A. De Martino, Y. Kim, E. García-Caurel, B. Laude, B. Drévillon, "Optimized Mueller polarimeter with liquid crystals", Opt. Lett. 28, 616-618 (2003).DOI

32

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, G. S. Phipps, "Optimization of retardance for a complete Stokes polarimeter", Opt. Lett. 25, 802-804 (2000).DOI

33

A. Lizana, N. Martín, M. Estapé, E. Fernández, I. Moreno, A. Márquez, C. Iemmi, J. Campos, M. J Yzuel, "Influence of the incident angle in the performance of liquid crystal on silicon displays", Opt. Express 17, 8491-8505 (2009).DOI

34

A. Lizana, A. Márquez, I. Moreno, C. Iemmi, J. Campos, M. J. Yzuel, "Wavelength dependence of polarimetric and phase-shift characterization of a liquid crystal on silicon display", J. Eur. Opt. Soc. Rap. Public. 3, 1-6 (2008).DOI

35

J. J. Gil, E. Bernabeu, "A depolarization criterion in Mueller matrices", Opt. Acta/J. Mod. Opt. 32, 259­261 (1985).

36

A. Lizana, I. Moreno, C. Iemmi, A. Márquez, J. Campos, M. J. Yzuel, "Time resolved Mueller matrix analysis of a liquid crystal on silicon display", Appl. Opt. 47, 4267-4274 (2008).DOI

37

R. Ossikovski, M. Anastasiadou, S. B. Hatit, E. García-Caurel, A. De Martino, "Depolarizing Mueller matrices: How to decompose them?", Phys. Stat. Sol. A 205, 720-727 (2008).DOI

38

M. Foldyna, E. García-Caurel, R. Ossikovski, A. De Martino, J. J. Gil, "Retrieval of a non-depolarizing component of experimentally determined depolarizing Mueller matrices", Opt. Express 17, 12794-12806 (2009).DOI

39

S. Y. Lu, R. A. Chipman, "Interpretation of Mueller matrices based on polar decomposition", J. Opt. Soc. Am. A 13, 1106-1113 (1996).DOI

40

I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, F. Mateos, "Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display", J. Appl. Phys. 94, 3697-3702 (2003).DOI

41

A. Lizana, I. Moreno, A. Márquez, C. Iemmi, E. Fernández, J. Campos, M. J. Yzuel, "Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics", Opt. Express 16, 16711-16722 (2008).DOI

42

I. Moreno, C. Iemmi, A. Márquez, J. Campos, M. J. Yzuel, "Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display", Appl. Opt. 43, 6278-6284 (2004).DOI

43

A. Lizana, A. Márquez, L. Lobato, Y. Rodange, I. Moreno, C. Iemmi, J. Campos, "The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators", Opt. Express 18, 10581-10593 (2010).DOI

44

A. Hermerschmidt, S. Osten, S. Krüger, T. Blümel, "Wave front generation using a phase-only modulating liquid-crystal based micro-display with HDTV resolution", Proc. SPIE 6584, 65840E (2007).DOI

45

Z. Zhang, G. Lu, F. T. S Yu, "Simple method for measuring phase modulation in liquid crystal television", Opt. Eng. 33, 3018-3022 (1994).DOI

46

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, J. R. Parker, T. D. Wilkinson, H. Xu, "The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM", IEEE Phot. Tech. Lett. 20, 60-62 (2008).DOI

47

J. A. Davis, I. Moreno, P. Tsai, "Polarization eigenstates for twisted-nematic liquid crystal displays", Appl. Opt. 37, 937-945 (1998).DOI

48

R. D. Juday, "Generality of matched filtering and minimum Euclidean distance projection for optical pattern recognition", J. Opt. Soc. Am A 18, 1882-1896 (2001).DOI

49

I. Moreno, J. Campos, C. Gorecki, M. J. Yzuel, "Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition", Jap. J. Appl. Phys. 34, 6423-6432 (1995).DOI

50

T. Fujita, H. Nishihara, J. Koyama, "Blazed gratings and Fresnel lenses fabricated by electron-beam lithography", Opt. Lett. 7, 578-580 (1982).DOI