Reconstrucción del gradiente de índice de refracción del cristalino por medio de métodos de optimización

A. De Castro, S. Marcos


Descargar artículo

Información básica

Volumen

V47 - N4 / 2014 Ordinario

Referencia

249-260

DOI

http://dx.doi.org/10.7149/OPA.47.4.249

Idioma

Spanish / Español

Etiquetas

Cristalino, Gradiente de Refracción, Métodos de Optimización.

Resumen

Esta publicación resume los resultados de la tesis doctoral Reconstrucción del Gradiente de índice de Refraccion de la Lente Cristalino, presentada en la Universidad de Valladolid, España, en Julio de 2012. Las propiedades ópticas del cristalino del ojo no sólo dependen de la forma de sus superficies externas sino también de su índice de refracción. En muchas especies, incluida la humana, el índice de refacción no es homogéneo y hay un gradiente de índice de refracción (GRIN) que es máximo en el centro del cristalino. En el trabajo de tesis doctoral propusimos un método para estimar dicho gradiente de índice de refracción en cristalinos in vitro y poder estudiar su influencia en las propiedades ópticas del cristalino. El método se demostró en modelos animales y se utilizó para estudiar el GRIN de cristalinos humanos. También se estudió el efecto del GRIN en la visualización de la superficie posterior del cristalino con Tomografía de Coherencia óptica.

Referencias

0

A. de Castro, Reconstruction of the Gradient Refractive Index of the Crystalline Lens, PhD Thesis, Universidad de Valladolid (2012).http://www.vision.csic.es/Publications/Documents/PhD Thesis.aspx

1

C. Wintringham, An Experimental Inquiry on Some Parts of the Animal Structure (1740).

2

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, J. M. Parel, "Optical power of the isolated human crystalline lens", Invest. Ophthalmol. Vis. Sci. 49, 2541-2548 (2008).DOI

3

M. Dubbelman, R. G. L. van der Heijde, "The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox", Vision Res. 41, 1867-1877 (2001).DOI

4

L. F. Garner, G. Smith, "Changes in equivalent and gradient refractive index of the crystalline lens with accommodation", Optom. Vis. Sci. 74, 114-119 (1997). DOI

5

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, P. G. Swann, "Age-related changes in optical and biometric characteristics of emmetropic eyes",J. Vision 8, 29.21-2920 (2008).

6

A. Gullstrand, Nobel Lectures, Physiology or Medicine 1901-1921, pp. 414-431, Elsevier (1967).

7

J. W. Blaker, "Toward an adaptive model of the human eye", J. Opt. Soc. Am. 70, 220-223 (1980).DOI

8

G. Smith, B. K. Pierscionek, D. A. Atchison, "The optical modeling of the human lens", Ophthalmic Physiol. Opt. 11, 359-369 (1991).DOI

9

D. A. Atchison, G. Smith, "Continuous gradient index and shell models of the human lens", Vision Res. 35, 2529-2538 (1995).DOI

10

C. E. Campbell, "Nested shell optical model of the lens of the human eye", J. Opt. Soc. Am. A 27, 2432-2441 (2010).DOI

11

I. H. Al-Ahdali, M. A. El-Messiery, "Examination of the effect of the fibrous structure of a lens on the optical characteristics of the human eye: A computer-simulated model", Appl. Opt. 34, 5738-5745 (1995).DOI

12

O. Pomerantzeff, H. Fish, J. Govignon, C. L. Schepens, "Wide-angle optical model of the eye", J. Mod. Opt. 19, 387-388 (1972).

13

M. V. Pérez, C. Bao, M. T. Flores-Arias, M. A. Rama, C. Gómez-Reino, "Gradient parameter and axial and field rays in the gradient-index crystalline lens model", J. Opt. A 5, S293 (2003).DOI

14

M. A. Rama, M. V. Pérez, C. Bao, M. T. Flores-Arias, C. Gómez-Reino, "Gradient-index crystalline lens model: A new method for determining the paraxial properties by the axial and field rays", Opt. Commun. 249, 595-609 (2005).DOI

15

M. T. Flores-Arias, M. V. Pérez, C. Bao, A. Castelo, C. Gómez-Reino, "Gradient-index human lens as a quadratic phase transformer",J. Mod. Opt. 53, 495-506 (2006).DOI

16

H. L. Liou, N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling", J. Opt. Soc. Am. A 14, 1684-1695 (1997).DOI

17

R. Navarro, F. Palos, L. M. Gonzáz, "Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses", J. Opt. Soc. Am. A 24, 2175-2185 (2007).DOI

18

R. Navarro, F. Palos, L. M. Gonzáz, "Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens",J. Opt. Soc. Am. A 24, 2911-2920 (2007).DOI

19

C. E. Jones, D. A. Atchison, R. Meder, J. M. Pope, "Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI)", Vision Res. 45, 2352-2366 (2005).DOI

20

D. Vazquez, E. Acosta, G. Smith, L. Garner, "Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens", J. Opt. Soc. Am. A 23, 2551-2565 (2006).DOI

21

M. Dubbelman, R. G. L. van der Heijde, H. A. Weeber, "The thickness of the aging human lens obtained from corrected Scheimpflug images", Optom. Vis. Sci. 78, 411-416 (2001).DOI

22

M. Dubbelman, R. G. L. van der Heijde, H. A. Weeber, "Change in shape of the aging human crystalline lens with accommodation", Vision Res. 45, 117-132 (2005).DOI

23

A. V. Goncharov, C. Dainty, "Wide-field schematic eye models with gradient-index lens", J. Opt. Soc. Am. A 24, 2157-2174 (2007).DOI

24

J. A. Díaz, N. Blazejewski, J. Ferandez-Dorado, J. Arasa, F. Sorroche, C. Pizarro, "Analysis of the robustness of the lens GRIN profile in a schematic model eye", J. Mod. Opt. 58, 1764-1769 (2011).DOI

25

J. A. Díaz, C. Pizarro, J. Arasa, "Single dispersive gradient-index profile for the aging human lens", J. Opt. Soc. Am. A 25, 250-261 (2008).DOI

26

F. Manns, A. Ho, D. Borja, J. M. Parel, "Comparison of uniform and gradient paraxial models of the crystalline lens", Invest. Ophth. Vis. Sci. 51, E-Abstract 789 (2010).

27

M. Bahrami, A. V. Goncharov, "Geometry-invariant gradient refractive index lens: analytical ray tracing", J. Biomed. Opt. 17, 055001 (2012).DOI

28

F. Hauksbee, "A description of the apparatus for making experiments on the refractions of fluids: With a table of the specifick gravities, angles of observations, and ratio of refractions of several fluids", Phil. Trans. 27, 204-207 (1710).DOI

29

A. Huggert, "On the form of the iso-indicial surfaces of the human crystalline lens", Acta Ophthalmologica supplementum (1948).

30

S. Nakao, T. Ono, R. Nagata, K. Iwata, "Model of refractive indices in the human crystalline lens", Jpn. J. Clin. Ophthalmol. 23, 903-906 (1969).

31

P. P. Fagerholm, B. T. Philipson, B. Lindstrom, "Normal human lens - the distribution of protein", Exp. Eye Res. 33, 615-620 (1981).DOI

32

B. K. Pierscionek, "Surface refractive index of the eye lens determined with an optic fiber sensor", J. Opt. Soc. Am. A 10, 1867-1871 (1993).DOI

33

D. Vazquez, Tomographic Reconstruction of the Gradient Indices with Rotational Symmetry. Application to Crystalline Lenses, PhD Thesis, Universidad de Santiago de Compostela (2007).

34

B. A. Moffat, J. M. Pope, "The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens", Magn. Reson. Imaging 20, 83-93 (2002).DOI

35

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, J. M. Pope, "In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation", Invest. Ophthal. Vis. Sci. 49, 2531-2540 (2008).DOI

36

P. L. Chu, "Nondestructive measurement of index profile of an optical-fibre preform", Electron. Lett. 13, 736 -738 (1977).DOI

37

M. C. Campbell, "Measurement of refractive index in an intact crystalline lens", Vision Res. 24, 409-415 (1984).DOI

38

L. F. Garner, G. Smith, S. Yao, R. C. Augusteyn, "Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): Comparison of magnetic resonance imaging (MRI) and laser ray-trace methods", Vision Res. 41, 973-979 (2001).DOI

39

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, P. K. Gupta, "Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography", Appl. Phys. B 87, 607-610 (2007).DOI

40

R. P. Hemenger, L. F. Garner, C. S. Ooi, "Change with age of the refractive index gradient of the human ocular lens", Invest. Ophthal. Vis. Sci. 36, 703-707 (1995).

41

O. O. Stavroudis, The Optics of Rays, Wavefrons and Caustics, Academic Press, New York (1972).

42

A. Sharma, D. V. Kumar, A. K. Ghatak, "Tracing rays through graded-index media: A new method", Appl. Opt. 21, 984-987 (1982).DOI

43

J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor (1975).

44

A. de Castro, S. Barbero, S. Ortiz, S. Marcos, "Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and optical coherence tomography data", Opt. Express 19, 19265-19279 (2011).DOI

45

S. R. Uhlhorn, D. Borja, F. Manns, J. M. Parel, "Refractive index measurement of the isolated crystalline lens using optical coherence tomography", Vision Res. 48, 2732-2738 (2008).DOI

46

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, M. Wojtkowski, "Anterior segment imaging with spectral OCT system using a high-speed CMOS camera", Opt. Express 17, 4842-4858 (2009).DOI

47

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, S. Marcos, "Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging", Opt. Express 18, 21905-21917 (2010).DOI

48

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, F. Manns, "Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient", Biomed. Opt. Express 1, 1331-1340 (2010).DOI

49

A. Roorda, A. Glasser, "Wave aberrations of the isolated crystalline lens", J. Vision 4, 250-261 (2004).DOI

50

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, S. Marcos, "Age-dependent variation of the gradient index profile in human crystalline lenses", J. Mod. Opt. 58, 1781-1787 (2010).DOI

51

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, J. M. Parel, "Distortion correction of OCT images of the crystalline lens: Gradient index approach", Optom. Vis. Sci. 89, 709-718 (2012).DOI